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Sex- and age-dependent patterns 
of survival and breeding success 
in a long-lived endangered avian 
scavenger
Ana Sanz-Aguilar1,2,3,*, Ainara Cortés-Avizanda1,4,5,*, David Serrano1, Guillermo Blanco6, 
Olga Ceballos7, Juan M. Grande8,9, José L. Tella1 & José A. Donázar1

In long-lived species, the age-, stage- and/or sex-dependent patterns of survival and reproduction 
determine the evolution of life history strategies, the shape of the reproductive value, and ultimately 
population dynamics. We evaluate the combined effects of age and sex in recruitment, breeder survival 
and breeding success of the globally endangered Egyptian vulture (Neophron percnopterus), using 31-
years of exhaustive data on marked individuals in Spain. Mean age of first reproduction was 7-yrs for 
both sexes, but females showed an earlier median and a larger variance than males. We found an age-
related improvement in breeding success at the population level responding to the selective appearance 
and disappearance of phenotypes of different quality but unrelated to within-individual aging effects. 
Old males (≥8 yrs) showed a higher survival than both young males (≤7 yrs) and females, these later 
in turn not showing aging effects. Evolutionary trade-offs between age of recruitment and fitness 
(probably related to costs of territory acquisition and defense) as well as human-related mortality may 
explain these findings. Sex- and age-related differences in foraging strategies and susceptibility to 
toxics could be behind the relatively low survival of females and young males, adding a new concern for 
the conservation of this endangered species.

Long-lived species typically present deferred maturity and their vital rates (survival and reproduction) are 
expected to change with age1. Age- and/or stage-dependent patterns of survival and reproduction determine the 
shape of the reproductive value function, which ultimately drives population dynamics2. Age-related improve-
ments at the population level may occur as a consequence of the progressive selection of high-quality individuals 
(selection hyphotesis1,3), and/or by individual improvement due to acquisition of experience and performance 
in foraging, reproductive or migration skills, among others early in life (restraint and constraint hyphothesis4–6). 
Later, an age-related deterioration of performance and increased mortality probabilities due to senescence will be 
expected7. However, recent studies on long-lived birds indicate a very late life senescence (e.g. refs 8 and 9, which 
could also be masked by the selective disappearance of certain phenotypes among the older age-classes1).

Differences in age-dependent demographic parameters between sexes are also common in nature10,11, 
especially among species showing intense competition for mates (polygynous species)10,12, and/or body-sized 
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dimorphic species with asymmetric parental roles13. However, sex-specific life-histories exist even in monog-
amous species with low sexual body-size dimorphism and similar parental investment in reproduction9,11. For 
example, recruitment (i.e., age of first breeding) differs between sexes in several bird species, including long-lived 
raptors11,14,15. In addition, sex-specific costs of reproduction16,17, susceptibility to human-related mortality18,19 or 
to diseases and parasites20 may be responsible for sex-biased survival. Regarding reproductive performance, it is 
difficult to separate the sex-specific contribution of partners of socially monogamous species, but a few studies 
found evidence of sex-differences in aging of reproductive traits (see review in ref. 9). For example, old male 
albatrosses (but not females) showed a sharp reproductive senescence from age 30 years onwards due to a lower 
foraging efficiency21.

Large avian scavengers (vultures and condors, Accipitridae and Cathartidae, respectively) are among the 
longest-lived vertebrates, with some individuals living over 40 years22. These species show delayed maturity such 
that individuals typically do not recruit into the breeding populations until they have at least acquired adult 
plumage patterns after several years of life23 (but see ref. 24). Consistent with this slow life-history strategy, large 
avian scavengers have low fecundity rates (commonly one chick per year). Existing demographic studies have 
focused on the description of basic parameters, with few studies addressing the combined contribution of age 
and sex24,25, which are essential for a robust diagnosis of population dynamics and a better understanding of life 
histories evolution11,12. In fact, among long-lived territorial species it is very difficult to achieve large sample sizes 
of known-age marked birds for long time periods (as that obtained for short lived and/or colonial species)11, 
which precludes an examination of how aging affects individual life-history strategies. For this reason, poten-
tial sex-specific trade-offs between recruitment, breeding success and/or survival remain understudied26. Filling 
these gaps in knowledge would also significantly benefit conservation; avian scavenger populations have declined 
abruptly worldwide, a trend considered one of the greatest examples of the current biodiversity crisis27. There is a 
general consensus that higher rates of non-natural mortalities, combined with the above-mentioned slow pace of 
life, are the main causes of population collapses28, and sex-specific asymmetries may also play a key role in these 
processes18.

Here, we take advantage of a long-term (31 year) monitoring program of a globally endangered avian scaven-
ger, the Egyptian vulture (Neophron percnopterus), in North-Central Spain (Fig. 1) to study the basic demographic 
parameters of adult breeders (age of recruitment, breeding success and adult survival) in relation to sex and age. 
Since the parental roles of Egyptian vultures are roughly similar between sexes (see below), we expect similar 
parameters for males and females and/or age related improvements early in life (through acquisition of skills 
and experience or the (dis)appearance of different quality phenotypes) and/or late-in-life deteriorations due to 
senescence.

Results
Age of recruitment. Female and male Egyptian vultures showed a median age of first reproduction of 6 and 
7 yrs, respectively (Fig. 2). Mean age of first reproduction was similar (6.88 yrs in females and 7.25 yrs in males, 
t =  − 0.645, DF =  39.243, p =  0.523) but the variance was significantly larger among females that among males 
(ranges: 3–14 yrs vs. 5–11 yrs, respectively; = .F 2 85824

23 , p =  0.014; Fig. 2).

Figure 1. Egyptian vulture breeding distribution in Spain (grey dots) and the two study areas shown with 
an ellipse. Note that this figure has been modified from Donázar (2004)60 with the approval of SEO/Birdlife. 
Map Credit: J. C. del Moral Photo Credit Egyptian vulture: M. de la Riva.



www.nature.com/scientificreports/

3Scientific RepoRts | 7:40204 | DOI: 10.1038/srep40204

Breeding success. Regarding variations in breeding success with age, a first mixed modeling approach 
showed a tendency of Egyptian vultures to experience a higher probability of breeding successfully with the log-
arithm of age (estimate ±  SE =  2.575 ±  1.013, Chi-square =  6.46, p =  0.001). In a second step, the within-subject 
centering method indicated that this increase in performance with age was due to the selective appearance and 
disappearance of certain individuals, being similar for both sexes, and not to improvement within individu-
als as they aged (Table 1). Importantly, age of first and last reproduction were positively correlated (rs =  0.76, 
p <  0.0001), so this demographic, between-individual effect seems to be explained by high-performing individ-
uals recruiting and disappearing at higher ages than low-performing individuals. Thus, birds recruiting and dis-
appearing at early ages had the lowest probability of breeding successfully, and birds recruiting and disappearing 
at late ages had the highest (Fig. 3).

Survival. In survival analyses, the overall goodness-of-fit test of the Cormack-Jolly-Seber model of both 
female and male datasets was not statistically significant (Females: χ 2 =  14.61, DF =  18, p =  0.69, males: χ 2 =  0.01, 
DF =  8, p >  0.99). For females, several models describing age-dependent survival received similar support in terms 
of AICc, but no age structure reduced the AICc value of the constant model (Table 2). Mean female survival was 
0.82 (95% CI: 0.74–0.88; Model 1, Table 2; Fig. 4). In contrast, model selection for males retained a model in which 
males ≤ 7 yrs and males ≥ 8 yrs had different survival probabilities: 0.61 (95% CI: 0.39–0.79) vs. 0.90 (95% CI:  
0.83–0.94), respectively (Model 10, Table 2; Fig. 4). A model with a threshold at 8 yrs had a similar AICc and esti-
mated a local survival probability of males ≤ 8 yrs and males ≥ 9 yrs of 0.70 (95% CI: 0.53–0.82) and 0.91 (95% CI:  
0.84–0.95), respectively (Model 11, Table 2). Resighting probabilities for females and males were 0.90 (95% CI: 
0.87–0.93) and 0.96 (95% CI: 0.94–0.98), respectively.

When combining the two datasets, a model including a sex effect but no age effects on survival was 1.31 
units of AICc higher than a model without sex effects, indicating no clear sex effect on mean survival (Table 2 
combined analyses). Mean survival for males (0.86, 95% CI: 0.79–0.90) was slightly higher than that of females, 
but CI overlapped (see above). However, when taking into account the best survival structures from the previous 
analyses, a model with female constant survival and male age-dependent survival (7yrs ≠  ≥ 8yrs) was clearly 
retained, reducing the AICc value by 5.77 units (Table 2 combined analyses). Old males showed a higher survival 
than females (Fig. 4).

Discussion
Our results strengthen the importance of taking into account age and sex when studying life histories, even 
among monogamous species in which both sexes exhibit similar parental care1,2,9,11,29. Based on a unique 
long-term monitoring of know-age marked individuals in a population of a territorial vulture, we found that sex 
asymmetries constrained the age of recruitment and the local survival of breeding individuals, but not breeding 
success. Likewise, we detected a larger range of recruitment ages (especially among females) and a substantial 
mean delay in the acquisition of breeding territories compared to sexual maturity (especially among males). The 
density-dependent age of recruitment hypothesis predicts that individuals can advance the age of first reproduc-
tion when vacancies exist in the population, with recruitment serving as a buffering mechanism allowing per-
sistence30. Our focal population is under clear decline linked to unnatural high mortalities31–33 but still showed a 
substantial delay in recruitment. Although a high plasticity in age of first reproduction is a common trait among 
long-lived species, early reproduction has been commonly associated with increased mortality and/or breed-
ing costs16,34. In general, among long-lived species, a delay in the onset of reproduction beyond sexual maturity 

Figure 2. Median and cumulative observed age of recruitment of female (n = 25) and male (n = 24) 
Egyptian vultures. 
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benefits individuals in terms of lifetime reproductive success, and may be an adaptive strategy11. Moreover, 
sex-specific differences in the optimal age of first reproduction have been described for numerous species11. For 
example, for two raptor species, the barn owl (Tyto alba) and the merlin (Falco columbarius), females bene-
fited more from earlier onset of reproduction than males11. Accordingly, our results also suggest that a tradeoff 
between survival and early recruitment could explain the delayed recruitment of males observed in this declining 
population.

As expected under the general evidence of age-related improvements in reproductive performance in birds 
(e.g. selection, restraint and constraint hypothesis1), we found that Egyptian vultures increased their probability 
of breeding successfully with age, but only at the population level. Our analyses allowed to separate the contribu-
tions of between and within-individual age effects on breeding success indicating that demographic mechanisms, 
rather than ontogenetic processes (restraint and constraint hypothesis), were behind the observed age-related 
improvement of reproductive success29,35. Thus, low-quality individuals with lower reproductive performance 

Fixed effect Estimate SE Chi-square p-value

Selective appearance

 Minimum model Intercept − 3.325 1.271

Delta age (βW) 0.254 0.163 2.43 0.12

Age of first reproduction (βB) 1.732 0.638 7.37 0.007

R2 0.22

 Rejected terms Delta Age ×  Age of first reproduction 0.195 0.626 0.10 0.76

Sex (Males) 0.925 2.643 1.25 0.26

Sex (Males) ×  Delta age − 0.058 0.340 0.03 0.86

Sex (Males) ×  Age of first reproduction − 0.242 1.330 0.03 0.86

Selective dissapearance

 Minimum model Intercept − 3.146 1.521

Delta age (βW) − 0.076 0.221 0.12 0.73

Age of last reproduction (βB) 1.477 0.653 5.12 0.024

R2 0.21

 Rejected terms Delta Age ×  Age of last reproduction 0.197 0.551 0.13 0.72

Sex (Males) 3.752 3.328 0.73 0.39

Sex (Males) ×  Delta age − 0.356 0.498 0.51 0.47

Sex (Males) ×  Age of last reproduction − 1.393 1.431 0.95 0.33

Table 1.  Binomial mixed models to distinguish within- and between-individual age effects on breeding 
success of Egyptian vultures. The selective appearance of phenotypes (between-individual effects) was tested 
by including the natural logarithm of age of first reproduction into the models, while individual changes with 
age (within-individual effects) was tested by subtracting individual age of first reproduction from individual age 
when each breeding event was recorded (logarithmized delta age). The selective disappearance of individuals 
was tested in a similar way, but replacing age of first reproduction with age of last reproduction. The minimum 
model is the minimum retained model necessary to separate within- and between-individual effects53. Variance 
explained by each model (conditional R2) is shown61.

Figure 3. Breeding success probabilities of female (black points) and male (white dot) Egyptian vultures 
aged <7 and ≥7 years. 
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would appear (i.e., recruit) and disappear from the breeding population at earlier ages (selection hypothesis4) 
and high quality individuals would start breeding and disappear at later ages. We cannot overlook that individual 
improvements may be related to the potential acquisition of experience in reproductive skills and/or other indi-
rectly associated activities, such as foraging and territory defense5,6, and that these effects might arise with larger 
sample sizes. Egyptian vultures likely gain experience during their long pre-reproductive years before becoming 
breeders at quite advanced ages11.

Species with monogamous mating systems generally lack sex bias in mortality (see a review in ref. 9). 
However, sex-specific susceptibility to human-related mortality linked to behavioral mechanisms19 or small 
sex-specific differences in reproductive investment may be behind sex-biased survival, being especially impor-
tant for inexperienced and/or young individuals16,17. Here, we detected different patterns of survival among sexes. 
Namely, female breeders did not show the aging effects of males. Old male breeders had comparatively higher 
local survival (0.90) than young ones (0.61), with this last estimate being very similar to a previous estimate for 
non-breeding 5-year-old birds in the Ebro population in northern Spain (0.60)25. These low survival rates may be 
explained by the fact that birds on the verge of adulthood may also make a substantial investment in prospecting, 
thus being exposed to greater risks of unnatural mortality25 (e.g. human persecution, accidents). Accordingly, 
we could hypothesize that young breeding males may maintain exploratory behaviors and be exposed to higher 

Model Survival Structure

Females Males

np AICc ΔAICc np AICc ΔAICc

1 Constant 2 390.30 0 2 244.63 7.08

2 Age 16 411.66 21.36 17 304.32 66.77

3 A 3 391.68 1.38 3 244.19 6.63

4 A2 4 393.27 2.97 4 239.24 1.69

5 Log(A) 3 391.95 1.65 3 241.56 4.00

6 [3 yrs] ≠  [≥ 4 yrs] 3 391.98 1.67 — — —

7 [≤ 4 yrs] ≠  [≥ 5 yrs] 3 391.99 1.69 — — —

8 [≤ 5 yrs] ≠  [≥ 6 yrs] 3 392.29 1.99 3 246.39 8.84

9 [≤ 6 yrs] ≠  [≥ 7 yrs] 3 392.27 1.97 3 242.38 4.83

10 [≤ 7 yrs] ≠  [≥ 8 yrs] 3 392.19 1.89 3 237.55 0

11 [≤ 8 yrs] ≠  [≥ 9 yrs] 3 391.53 1.23 3 238.25 0.69

12 [≤ 9 yrs] ≠  [≥ 10 yrs] 3 392.38 2.08 3 241.02 3.47

13 [≤ 10 yrs] ≠  [≥ 11 yrs] 3 392.36 2.06 3 243.29 5.73

14 [≤ 11 yrs] ≠  [≥ 12 yrs] 3 392.37 2.07 3 244.73 7.18

Model Survival Structure (combined analysis) np AICc Δ AICc

1 Constant 3 633.59 5.77

2 Sex 4 634.90 7.08

3 females (Constant)/males ([≤7 yrs] ≠ [≥8 yrs]) 5 627.82 0

Table 2.  Modeling age-dependent survival of Egyptian vultures. Model Survival Structure: Separate analyses 
by sex and Model Survival Structure (combined analyses). Notation: np =  number of parameters; AIC =  Akaike 
information criterion corrected for small sample size; Δ AICc =  AICc difference between the current model and 
that with the lowest AICc value. Model notation: Age =  full differences among age classes; A =  lineal effect of 
age; A2 =  quadratic effect of age; Log(A) =  logarithmic effect of age.

Figure 4. Local survival probabilities of female (n = 31) and male (n = 30) Egyptian vultures (estimates 
from Model 3, Table 2 Model Survival Structure (combined analyses)).
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anthropogenic mortality risks. Our results could also indicate a male-specific cost associated with early reproduc-
tion. Male and female Egyptian vultures are almost monomorphic in size but males have more intense secondary 
sexual characters (e.g., the color of the face, linked to carotenoid acquisition36). Also, males perform major active 
territory defense (e.g. displaying complex undulating flights) against conspecific and heterospecific intruders 
(authors unpublished), while females would select mates without incurring in such costs. Thus, our results sug-
gest that females may recruit at earlier ages than males without survival costs, and this would explain the larger 
observed variance in female age of first reproduction11. Later in life, a decrease in survival (or reproductive suc-
cess) at advanced ages (i.e., senescence9) was not detected for any sex. It is possible that the study period was rela-
tively short with respect to the species’ potential longevity (captive birds survived up to 37 years22), or that sample 
size for very old individuals was small and senescence in long-lived birds has usually been detected very late in 
life8,21. It seems also reasonable that the relatively high rates of mortality of breeding adults detected here would 
preclude the appearance or detectability of senescence traits in our study population.

Importantly, female Egyptian vultures in our study population showed an alarmingly low local survival in 
comparison with the survival rates estimated for adults breeding in other European populations and other large 
body-sized scavengers8,37,38. Higher rates of female mortality as that found here have been claimed as the main 
factor leading to male-skewed adult sex-ratios in many bird species with balanced sex-ratios at birt39. As stated 
before, asymmetric mortalities between sexes may occur due to sex-specific costs of reproduction17 but also to 
sex-specific differences in foraging strategies and habitat selection, as occurs in other avian species19,39,40.

From a large-scale perspective, the survival of trans-Saharan migrant species is influenced by the ecological 
conditions in wintering areas25,41. Although data are scarce, it appears that both male and female Egyptian vul-
tures have similar home ranges during the breeding and wintering period in African Sahel regions42–44. However, 
different and decisive factors may be operating at a smaller scale. As occurs in other top scavenger species, such as 
in Andean condors (Vultur gryphus), the differential exploitation of space in terms of microhabitat between sexes 
may explain the observed patterns41,45. In our case study, the females may more frequently exploit predictable 
food sources, such as dumps and supplementary feeding stations, than males (ref. 44, authors’ unpublished data). 
This could also be the case for young and inexperienced males. By foraging on human-delivered waste individuals 
may be more exposed to associated risks (e.g. poisons, pathogens and/or toxic veterinary pharmaceutical46). In 
the Ebro Valley, although data are scarce, from a total of 13 known-sex Egyptian vultures found dead by poison, 
9 (69%) were females (authors’ own data).

Overall, our findings present an approach to understand the evolution of sex-specific life-history strate-
gies in long-lived birds while also posing concerns facing the conservation of this globally threatened species. 
Susceptibility to anthropogenic factors is one of the main sources of vulnerability of wildlife populations47. In 
the case of the threatened Egyptian vulture, given that anthropogenic mortality continues to be high in some 
European regions, the recovery of its populations is challenging28. Moreover, the female-skewed mortality that we 
found here adds concern for the conservation of this globally endangered species. In fact, if differences in survival 
between sexes would be ignored (e.g. by using the mean survival estimate (0.84, Model 1, Table 2 combined anal-
yses)) the survival of breeding females would be overestimated resulting in biased and too optimistic predictions 
of population viability analyses. Unbalanced sex ratios in the adult fraction of the population would lead to a 
reduction in effective population size and ultimately reduce population viability in the medium and long term, as 
predicted for other large avian scavengers such as the Andean Condor18. The conservation of carrion-eaters in the 
Old World has focused on the importance of tackling direct and indirect deaths from persecution, mainly due to 
the ingestion of toxics27. Our study also emphasizes that further studies deepening our knowledge of the potential 
age and/or sex-specific differences in habitat use and risks of toxicity associated with the use of predictable food 
sources (dumps and supplementary feeding stations) are urgently needed48.

Methods
Study species. The Egyptian vulture is a globally endangered medium-sized scavenger (weighing around 
2 kg) living in dry and mountain biomes of southern Europe, Asia and Africa. Formerly very abundant, the global 
population of Egyptian vultures has experienced a severe decline throughout its range49. The Spanish population 
comprises ca. 80% of the European population and in some regions has seen a concerning decline in the last two 
decades31. Egyptian vultures are monogamous and highly philopatric to their breeding territories31,50. Although 
both sexes are indistinguishable in plumage, females are slightly larger and ~10–15% heavier than males. Females 
typically produce 2 eggs per clutch, which are incubated by both parents, which also share parental investment 
during chick rearing51. This highly opportunistic species forages on small wild prey and on carcasses of small and 
medium-sized animals32,50. Continental Western European populations of Egyptian vultures spend the wintering 
season (and sometimes their first year of life) in the sub-Saharan Sahel region42. Pre-breeder survival varies with 
age: it increases up to 4 yrs of age and then decreases at 5 yrs of age when birds acquire adult plumage, abandon 
the communal lifestyle of juveniles, and usually begin to look for a breeding territory25. Little is known, however, 
about age- and sex-dependent recruitment patterns, breeding success and breeder survival28,37.

Study areas and field procedures. The research was performed in North-Central Spain (Fig. 1). The 
monitoring program started in 1986, searching for territories and ringing chicks, and an exhaustive monitoring 
of breeding birds at territories in the Ebro Valley (19000 km2) has been carried out since 1992. Additionally, in 
2003, the monitoring program extended to Segovia (1800 km2) and additional territories and breeding birds were 
included in the monitoring of the population that has continued to date (2016). Overall, during the study period, 
1018 Egyptian vultures of known age have been captured and marked with both aluminum and plastic rings 
allowing their long-distance identification (918 nestlings in their nests and 100 immature birds using cannon 
nets). Moreover, 70% of them were sexed with molecular techniques allowing the robust determination of an 
unbiased secondary sex-ratio (N =  717 fledglings, 0.53 females, 0.47 males, Binomial test p =  0.1167).
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We surveyed most breeding territories within the study area (including active and abandoned territories31) 
at least three times per breeding season to collect data on territory occupancy and breeding success, to identify 
ringed breeders present at territories and to ring and sample fledglings (see details in ref. 25). From 1992 to 2016, 
61 marked individuals (31 females and 30 males, representing 6% of the 1018 marked individuals of known age) 
have been detected breeding in the focal study area (N =  59) and adjacent territories in Central Spain (N =  2) 
located between the two exhaustively monitored areas (Fig. 1). Our monitoring allowed us to record the precise 
age of first reproduction for 49 individuals (25 females and 24 males). The remaining 12 birds corresponded to 
individuals of an uncertain age of recruitment observed breeding for the first time in territories not accurately 
monitored the year before (e.g., breeding birds at new territories that could have gone unnoticed or territories that 
failed in an early reproductive stage without time for identifying breeding adults). Maximum lifespan detected 
was 24 (N =  1) and 21 (N =  1) years for males and females, respectively (with individuals still alive at the end of 
the study, thus representing a minimum estimate of maximum lifespan).

Analytical procedures. Despite the intense monitoring effort, it was not always easy to ascertain if the 
breeders associated with each territory were marked and/or to detect early reproductive failures. Therefore, 
uncertain data (see above) were discarded for recruitment tests. Sex differences in the mean and variance of age 
of first reproduction were analyzed by means of a t-test and F-test, respectively.

We used Generalized Linear Mixed Models (GLMM)51 using the package lme452 in R v. 3.1.353 to assess the 
effects of age on breeding success using de data of 226 breeding events (see detailed sample sizes in Table S1). 
The response variable was whether or not the individual bred successfully (binomial mixed model with logit link 
function), while bird identity and year were fitted as random terms to account for multiple measurements of the 
same individual and temporal heterogeneity, respectively. We initially explored if variation in breeding success 
could be explained by the linear, logarithmic or quadratic effects of age. This approach, however, does not allow 
for distinguishing whether potential variation in breeding success over age is due to within-individual changes 
(improvement, senescence, terminal effects) or to between-individual heterogeneity (the selective appearance or 
disappearance of certain phenotypes)29. Within-subject centering (sensu54) is a statistical method to do so, and 
has been shown to be useful in non-experimental situations55. We applied this technique by fitting mixed-effects 
models with the following structure:

α α= β + β + β − + +y A u e( )ij B j W ij j j ij0 0 0

where βB is the between-individual effect of age of first or last reproduction (for testing the selective appearance 
or disappearance of individuals, respectively), βW is the within-individual effect of delta age (the age at which the 
breeding success of each individual was measured minus individual age of first or last reproduction), u0j is the 
random intercept and e0ij the residual variance.

Survival probabilities were modeled by means of multi-event capture-recapture models56 allowing for the 
combination of different types of data (on individual monitoring of known-age breeders (252 observations) and 
on territory monitoring) to improve parameter estimation and to differentiate true absences from detection 
failures56. The multi-event framework distinguishes what can be observed in the field (the events coded in the 
encounter histories) from the underlying biological states of the individuals, which must be inferred57. Our model 
included two biological states: locally alive (coded A) and locally dead (coded D). Encounter histories were coded 
using three different events (see below). Each row of encounter histories belonged to a different individual and 
each column referred to the individuals’ age (from the youngest to the oldest age that individuals could reach at 
the end of the study) instead of the classical individual histories by year. The three events used were:

Event ‘0’ was used to indicate that: (I) at a particular age the individual had not yet been detected breeding 
(i.e., events before recruitment); (II) at a particular age after recruitment, an individual was not breeding in its ter-
ritory, with its territory empty or occupied by different breeders; (III) the individual was recovered dead (i.e., the 
vulture did not reach this particular age); and (IV) the individual could not reach this particular age class due to 
the length of the study. These cases were not taken into account in the analyses (i.e., the encounter histories were 
right censored, using a ‘− 1’ code in an additional column, see details in ref. 58. Consequently, the information of 
‘0’ event only refers to a locally dead state.

Event ‘1’ was used to indicate that a vulture was observed breeding at a particular age. Consequently, this event 
only refers to a locally alive state.

Event ‘2’ was used to indicate that a vulture was not observed at a particular age in a territory not accurately 
monitored this year. Consequently, this event can refer to both alive and dead states.

The multievent model estimates the probabilities of transition between the states (survival ф and mortality 
1 − ф probabilities, matrix 1) and the probability of resighting (p, matrix 2) that relates the observed events with 
the individual state. This model assumed that when a territory was properly prospected (events 0 and 1) the state 
of the individual (locally alive or dead) was known with certitude. Consequently, the resighting probability, p, is 
the probability of a proper prospection of territories and 1-p represent detection/prospection failure (event 2). 
However, note that survival and mortality probabilities estimated in this way must be considered local/apparent 
(i.e., they do not allow for distinguishing between mortality and emigration).
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Capture–recapture analysis began with the assessment of the goodness-of-fit (GOF) of the 
Cormack-Jolly-Seber model to the data using program U-CARE 2.3.258. Parameters were estimated simultane-
ously by maximum likelihood using program E-SURGE 1.6.358. To avoid overparameterized models, we first built 
models for males and females separately, and all models considered a single resighting probability parameter. We 
tested the effects of age on survival by considering no age effects, full age effects, linear, quadratic and logarithmic 
curves, and different age structures including an arbitrary threshold (from 3 to 12 yrs old) to differentiate young 
and old breeders. Finally, we combined both datasets to test for between-sex differences. Model selection was 
based on Akaike’s Information Criterion adjusted for the effective sample size, AICc59. Models within 2 points of 
AICc were considered equivalent.

Ethic statements. Capture banding and monitoring of Egyptian vultures were conducted under permits and 
following the protocols approved by the competent Regional Governments of Navarre, Aragón and Castilla-León 
and following the protocols approved by the Ethic Committee of CSIC (CEBA-EBD-12-56), in accordance with 
the approved guidelines.
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