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significant for many ecological questions, it
is common to discuss seed distributions
chiefly in terms of distance from the
source. Conventional wisdom describes the
seed number/distance relationship as lep-
tokurtic (with a higher peak and longer tail
than a normal distribution); from the peak
outward, seed numbers are generally con-
sidered to decrease monotonically, fitting a
negative exponential curve (or sometimes a
negative power function: Okube and Levin,
1989; Fig. 4.1). Most measured seed shad-
ows conform to this expectation (Fig. 4.2;
Willson, 1993a). The nature of the source
{single or multiple individuals) can influ-
ence the location of the peak of the curve,
and the use of seed density rather than
numbers can change the overall shape of
the curve, including the proximity of the
peak to the source (Peart, 1985; Greene and
Johnson, 1996).

Deviations from the conventional seed
shadow shape can result from patchiness
of habitat structure (Hoppes, 1988;
Debussche and Lepart, 1992; Debussche
and Isenmann, 1994; Kollmann and Pirl,
1995; Aguiar and Sala, 1997) and other

10

ecological factors, including behaviour pat-
terns of the seed vectors that lead to nucle-
ation processes (Willson and Crome, 1989;
McClanahan and Wolfe, 1993; Verdii and
Garcfa-Fayos, 1996, 1998; Julliot, 1997).
For species with polymorphic seeds (i.e.
with and without dispersal devices, or
with two or more different kinds of disper-
sal devices), the shape of the seed shadow
for each seed type may differ, such that the
combined seed shadow for a given parent
may have a very unconventional shape.
Many factors can alter the location of
the peak and the slope and shape of the tail
of the seed shadow for particular species
and individuals (e.g. Rabinowitz and Rapp,
1981; Johnson, 1988; Debussche and
Lepart, 1992; Verdd and Garcfa-Fayos,
1996, 1998; Julliot, 1997). Some factors are,
from the plant’s perspective, strictly envi-
ronmental and thus outside the control of
the plant (e.g. the strength and direction of
the wind, the social behaviour of animal
dispersal agents, the patterns of rainfall
and relative humidity). Other factors, such
as plant height, have a strong environmen-
tal component (Greene and Johnson, 1996}

Number of seeds

Distance

Fig. 4.1. Idealized curves commonly used to describe the distribution of seeds at increasing distances
(arbitrary units) from the seed source. Real seed shadows often peak at some distance from the source; in
that case, the curves refer to the part of the seed distribution from the peak outward. For a given set of
coefficients, the negative exponential curve (y = ax™™) drops less steeply than the negative power function
(y = ax™™); it is converted to a straight line on a semilogarithmic scale. (From Okube and Levin, 1989.)
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but may also have a genetic component.
Still others are probably controlled both by
environment and the genetic constitution
of the parent plant, the balance depending
on the species and circumstances (e.g. fruit
size, seed size, ease of dehiscence or
abscission). All such factors can contribute
to variation in the size and shape of the

seed shadow among species and oveow
conspecific individuals.

Few data yet exist, either |
tropics or from the temperate zone
pare seed shadows generated by difterent
dispersal modes (but see Gorchov et al.
1993; Portnoy and Willson, 1993 Willsim,
1993a). Even less is known about how the

(a) 30

20

i

20

Proportion of seeds
>

{c) 20

95 140 185

Distance {cm)

Fig. 4.2. Seed shadows of three individuals of Lithospermum caroliniense. The tails of all three seed
shadows fit a negative exponential curve, but the slope of that curve (on a semilog plot) varies from —1.47
to —1.72, and the location of the peak differs. (From Westelaken and Maun, 1985.)
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loss or the addition of a dispersal agent
alters the seed shadow of a plant.
Moreover, we cannot yet make any general-
ization about the relative ecological impor-
tance of different portions of the seed
shadow for the evolutionary ecology of
plants.

In order to understand the ecological
and evolutionary consequences of variation
in the length and shape of the seed shad-
ows, we need to experimentally modify
seed distributions and monitor the fitness
of recruits in different parts of the distribu-
tion, for a variety of species and circum-
stances (Portnoy and Willson, 1993). The
tail of the distribution may be at least as
important as the modal portion of the
curve, although little theoretical effort has
been devoted to this question (but see, for
instance, Cain et al., 1998). Propagules in
the distribution’s tail potentially spread the
parental genes more widely, and plant
traits that affect the behaviour of such tails
can be subject to selection. The examina-
tion of 68 data sets has shown a lack of
association between tail shape and disper-
sal mode, suggesting that, in most circum-
stances, selection for tail behaviour
contributes little to the evolution of the
dispersal mode itself (Portnoy and Willson,
1993).

The evolution of dispersal
Why are seeds dispersed?

If the dispersal of offspring increases the
fitness of a parent, we should expect that
dispersed offspring survive and reproduce
better than undispersed offspring, either
because they avoid detrimental conditions
near the parent or because they reach better
conditions farther away (which amounts to
the same thing, from a different perspec-
tive). If seeds fall directly beneath the
canopy of a parent, the physical separation
hardly constitutes real dispersal, but fallen
seeds are normally treated as part of the
seed shadow, for purposes of comparing
seed fates. Van der Pijl (1982) actually
treats simple seed fall as a separate mode

of dispersal for species that have no evi-
dent special means. The principal factors
that favour dispersal are avoidance of nat-
ural enemies or sibling interactions and the
probability of finding a physically suitable
establishment site.

1. Some natural enemies of seeds and
seedlings respond to density and/or dis-
tance from the parent (or other conspe-
cific). Pathogens, postdispersal seed
predators, parasites and herbivores often
concentrate their activities where their
resources are common, and more distant
seeds/seedlings may survive better than
those close to the parent (e.g. Howe and
Smallwood, 1982; Augspurger, 1983a, b;
Augspurger and Kelly, 1984; Howe, 1993;
Peres et al., 1997; Hulme, 1998); the magni-
tude of this effect varies among species
(Augspurger, 1984; Howe, 1993). The
impact of such consumers depends, in
part, on their specificity to genotype or to
species of resource — some attackers may
specialize in the offspring of particular par-
ents or in particular taxa. The density or
proximity of other genotypes or species of
seed would have little impact on the avail-
ability of suitable resources for such spe-
cialists, and thus the effect of density- and
distance-responsive enemies must often
vary with their specificity.

The ability of natural enemies to
depress seed and seedling density also
depends, of course, on other factors limit-
ing their abundance and activity. These
will vary among consumers, and even
among populations of the same species of
consumer. Thus, although numerous cases
of density- and distance-responsive attack-
ers have been reported, we do not yet have
a general picture of which plant species are
subject to such attacks and in what circum-
stances (e.g. habitat, season, geographical
region, adult densities).

2. Because the seeds and seedlings of any
one parent are genetically related (at least
half-sibs), they are subject, potentially, to
sibling competition. Conventional wisdom
suggests that sib competition may often be
more severe than competition with non-sib
conspecifics, because their patterns of
resource use are probably more similar {(see
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references in Ellstrand and Antonovics,
1985; see also McCall et al, 1989).
However, in a number of cases, sib compe-
tition does not have a detectably different
outcome from that of non-sib competition,
and sibs may even profit, at some early
stages of the life history, from the proxim-
ity of genetic relatives (Smith, 1977;
williams et al., 1983; Willson et al., 1987;
Kelley, 1989; McCall et al., 1989).
Furthermore, self-fertilized seeds disperse
less well than outcrossed seeds in
Impatiens capensis and Amphicarpaea
bracteata (Schmitt and Ehrhardt, 1987;
Trapp, 1988), which is the opposite of what
would be expected if dispersal were an
adaptation to reduce sib competition. Also,
if sib competition were critical, genetically
variable offspring should have higher fit-
ness than clonal progeny where sib densi-
ties are high, but this was not the case in
Anthoxanthum odoratum (Kelley et al,
1988).

Another potential disadvantage of high
sibling densities is the possibility of
inbreeding when (and if) the offspring
reach adulthood (Ghiselin, 1974). The rela-
tive effects of extreme inbreeding and out-
crossing on the genetic variance of
offspring are not predictable in any simple
way, because they depend on many aspects
of the genetic system, as well as past
episodes of inbreeding (McCall et al.,
1989). As a result, the degree of offspring
similarity and the intensity of potential sib
competition are likewise difficult to pre-
dict. A degree of inbreeding may be advan-
tageous under certain circumstances (e.g.
Shields, 1982; Jarne and Charlesworth,
1993). Furthermore, even if inbreeding is
disadvantageous, there are other ways for
plants to reduce inbreeding (e.g. through
changes in the floral biology and mating
system), so it is difficult to assess the
importance of inbreeding avoidance as a
factor that selects for offspring dispersal.
Moreover, dispersal has its own costs (e.g.
GCohen and Motro, 1989), which may out-
weigh the costs of some inbreeding (Waser
et al., 1986); the benefit/cost ratio is likely
to vary among species (e.g. Augspurger,
1986).

Attacks by parasites and p
may be more devastating when sibs grov
in close proximity to each other (se
Alexander and Holt (1998) for a recen
review on the interaction between plan
competition and disease). Just as con
specifics growing in a monoculture ar
often more heavily hit by pests than the
are when growing in a mixed stand. so als
are the genetic monocultures of closel
related individuals sometimes more hea
ily hit by certain kinds of pests than stanc
of mixed parentage (e.g. Parker, 198!
Burdon, 1987). To the extent that a specit
is subject to such attacks on particul:
genetic lineages, there may be selection fi
dispersal, which lowers the concentratic
of any one lineage in a given area {Fig. 4.3
3. Some species have special physic
requirements for germination and esta
lishment that are met only in scattert
locations, such as fallen logs, tree-fall ga:
or badger mounds. In the absence of we
developed dormancies and the ability
wait for suitable conditions to arrive, sele
tion may favour dispersal in order
increase the probability of finding the ne
essary kind of location (Platt and We
1085; Reid, 1989; Sargent, 1995). Ev
with good dormancy mechanisms, disp:
sal should enhance the probability that
waiting seed will eventually encounter t
right conditions for  establishme
Theoretically, dispersal generally enhant
the likelihood that at least some offspri
reach appropriate sites (Hamilton and M
1977; Comins et al., 1980). These theort
cal expectations need to be examined fo
variety of particular cases. If the st
shadow is adapted to the distribution
safe sites, species with widespread st
shadows should have more far-flung est
lishment sites than species with restric
seed shadows (Green, 1983; see also Ge
et al., 1984; Horvitz and Le Corff, 1993).

1O

What portion of the seed shadow
most effective in yielding successful
spring and how does this vary with sper
and conditions? The peak portion of
seed shadow, where the most seeds
deposited, often receives the most atten!
from ecologists. Although the peak ma)
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Fig. 4.3. A ‘bear garden’ — seedlings of Ribes bracteosum growing from a faecal deposit of an Alaskan
brown bear. The small squares in the grid beside the garden are 3 cm on a side. Both sib and non-sib
competition nfust be intense, predation by rodents can be severe and survivorship may ultimately be low.
Some bear deposits contain seeds of two or three species, and germination may occur a month to a year or

more after deposition. (Photo by . Zasada.)

ecologically important as a source of food
for seed predators and other consumers, we
seldom know if it is the most important in
terms of parental fitness. In part because
consumers or intense competition can level
the peak and in part because rare events
can be ecologically important, it seems
essential that the tail of the distribution
should receive more attention in the future.
Moreover, we need to know if there are any
patterns {among species, for instance) in
the relative importance of the distribu-
tional tail. A number of studies have
shown that seed and seedling survival
increases with distance from the parent
(see above), or that more distantly dispers-
ing seeds are more likely to reach good
sites (Platt and Weis, 1985). However, a few
studies have shown that seeds at the end of
the seed shadow often do poorly (Horvitz
and Schemske, 1986; Augspurger and
Kitajima, 1992) and some authors have
argued (without experimental documenta-
tion, however) that selection may actually
oppose dispersal in some species (Zohary,
in van der Pijl, 1982; but see Ellner and
Schmida, 1981). Recent studies by Russell
and Schupp (1998, and references therein)

show that patterns of initial seed-fall den-
sity are more affected by distance from a
seed source than by the physical structure
of the microhabitat, at least for wind-dis-
persed plants. On the other hand, investi-
gations by Donochue {1997, 1998), who has
decoupled the fitness effects of density and
distance from the ‘home site’, have shown
that selection on dispersion patterns is
likely to be through density rather than dis-
tance effects. This author has also investi-
gated the maternal environment effects on
seed dispersal within an evolutionary con-
text. Although maternal characters (e.g.
fruit and seed traits, architectural traits,
plant size, fruit production) are known to
influence seed dispersal, only a few studies
address the evolution of dispersal within
the context of maternal character evolution
(see also Thiede and Augspurger, 1996).

How are seeds dispersed?

If dispersal is advantageous, we would
expect to find that diaspores have adapta-
tions that enhance dispersal (Ridley, 1930;
van der Pijl, 1982). Morphological devices
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that enhance dispersal are often quite read-
ily evident and interpretable (Kerner, 1898;
Ridley, 1930; van der Pijl, 1982), although
some dispersal-enhancing traits (such as
buoyancy of seeds dispersed by water) are
less immediately obvious. Wind-borne
diaspores often have wings or plumes that
increase air resistance and slow the rate of
fall. Diaspores carried by animal con-
sumers commonly have edible appendages
or coverings that are consumed by animals
that later eject the seeds (Fig. 4.4); in some
cases, the seeds themselves are harvested
and either eaten (killed) or cached and
sometimes abandoned by the harvester
(Sork, 1983; Price and Jenkins, 1986).
Other animal-dispersed diaspores travel by
means of hooks or sticky coatings that
adhere to the exteriors of the animal vec-
tors. Some plants disperse their offspring
ballistically, by the explosive opening of
the fruits or the springing of a trip-lever.
Seeds of certain plant species combine two

| PWeetabn

or even three modes of
and Rice, 1981; Clifford
1989; Stamp and Lucas, 1990: Aronne anc
Wilcock, 1994: Traveset and Wilison
1997), as in some Viola (ballistie phus ants)
Disporum, Rhamnus, Myrtus. Smilax (bird:
plus ants) and Petalostigma pubescen:
(birds plus ballistic plus ants); a great num
ber of species are dispersed by both bird:
and mammals (e.g. Herrera, 1984b
Wwillson, 1993b; Traveset and Willson
1997).

The dispersal potential of the differen
modes of dispersal varies greatly. Botl
wind and vertebrates can potentially carr
seeds far from the parent plant, but ant
and ballistic mechanisms typically genel
ate shorter seed shadows. A preliminar
survey (Willson, 1993a) for herbaceou
species indicates that peak and maximu1
dispersal distances are greater. and th
slope of the tail of the seed distribution i
less steep, for wind and bailistic dispers:

Fig. 4.4. Ants (Formica podzolica) picking up seeds of Viola nuttallii. The seed bears an attractive m:&a
edible appendage. Ants carry the entire seed back 10 their nest, eat the appendage and discard the seed.
Dispersal of seeds by ants is very common in some floras, but the advantage of ant dispersal may vary
greatly among species o regions (e.g. escape from predators or o:..m., destructive agents, or deposition in
especially favourable site for germination and growth). (From Beattie, 1985, p. 74.)
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than for species with no special devices on
the diaspore. Maximum¢ distances are
greater for wind-dispersed. than for-ballisti-
callyi-dispersed-'seeds7of- herbs, - although
peak distances and slopes are similar. Such
resultstindicate that, onsaverage,, dispersal
devices’sdem o work’> Buf variation around
the averages was great, and both sampling
methods «and. environmental ‘conditions of
dispersal affect.the outcome: A-much better

» database'is. needed to:make’good  compar-

isons of the seed shadows produced in dif-
ferent ways, .« - i e

4 1 Of course, there is-also great variation
in the dispersal potential within each gen-
eral mode of dispersal. The relative size of
seed ‘and-iwing or plume-can-have enor-
mous effects on the-seed shadow of wind-
borne seeds {Augspurger ‘and Franson,
1987;:Sacchi, 1987; Benkmann, 1995). The
size and nvmammw« of the edible appendage
on. ant-dispersed seeds may influence the
rate of seed removal (Gunther and Lanza,
1989; Gorb and Gorb, 1995; Mark and
Olesen, 1996), the array of dispersing ant
species and the eventual fate of the seeds.
Dispersal of fleshy fruits by ground-forag-
ing - vertebrates generates. ‘different seed
shadows from those produced by flying
fruit-eaters. Nuts favoured by scatter-
hoarding squirrels may be spread more
widely than less favoured species of nuts
(Stapanian and Smith, 1984), but jays carry
acorns much further than squirrels carry
any nuts (Johnson and Webb, 1989). Seeds
dispersed by frugivorous lizards also show
different patterns of deposition from those
dispersed by mammals (Traveset, 1995). By
contrasting dispersal syndromes in a fam-
ily (Marantaceae) of tropical understorey
herbs, Horvitz and Le Corff (1993) found
that bird-dispersed species ‘went further
than ant-dispersed species; however, dis-
persion patterns did not vary among types
of dispersal, most species having a
clumped spatial patterning..

For vertebrate-dispersed species, it has
been hypothesized that plants can exert
some kind of control over seed shadows
produced by frugivores, by specific laxative
and/or constipative chemicals in the fruit
pulp, which affect seed retention time in

the dispersers’ guts (Murray et al., 1994;
Cipollini and Levey, 1997; Wahaj et al.,
1998). In turn, seed retention time inside
the disperser, together with other factors
(reviewed in Traveset, 1998), can affect the
germinability, the rate of germination, or
both, in certain species.

Although many species exhibit the
morphological devices that are presumed
to enhance dispersal, large numbers of
species lack any evident dispersal device
(Ridley, 1930; Willson et al, 1990a;
Willson, 1993a; Cain et al., 1998). The
seeds of some of these species are so small
that they are easily wind-borne without
special devices (e.g. orchids). Others have
small, hard seeds that are consumed by
herbivorous vertebrates along with the
foliage and dispersed after passing through
the animal’s gut, but whether or not this
constitutes an ‘evolutionary design’ can be
debated (Janzen, 1984; Collins and Uno,
1985; Dinerstein, 1989). Still other species
have small, round seeds that are shaken
out of the fruit when the plant is stirred by
a passing breeze or animal (e.g. Papaver);
this is considered to be a special mecha-
nism for dispersal by some (van der Pijl,
1982). Yet many species remain that lack
any apparent device for dispersal in space
and that also appear to have little capacity
for dispersal in time (Willson, 1993a).
Although some of these species may be dis-
covered to be dispersed by one of the major
modes, it is reasonable to ask why so many
species seem to lack dispersal devices.
How do such species achieve effective dis-
persal? Or is dispersal less advantageous in
these species?

Variation in dispersal devices is often
evident, both within species and among
closely related species. Examples of
within-species variation are provided by
many Asteraceae (seeds with and without
a device for wind dispersal) and amphi-
carpic species, which have both above-
ground seeds, which may be dispersed by
any of the normal vectors, and below-
ground seeds, which may not disperse at
all or may be harvested and cached by
rodents (van der Pijl, 1982). Examples of
variation among related species are many,
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Fig. 4.5. Variations on a theme - Acacia seeds apparently adapted for dispersal by ants (above) and by
birds (below). The food reward in the appendage on the seed is larger and :mcw__v\ more colourful (red,
orange, yellow versus white) in bird-dispersed species. (Photo courtesy of D.J. O’Dowd.)

one of the most striking being found in the
Acacia genus, which is widespread
through Latin America, Australia, Asia and
Africa. Most Australian acacias exhibit
morphological adaptations for dispersal by
ants or birds (Fig. 4.5); the American
species are dispersed by birds or large
mammals (O’'Dowd and Gill, 1986); the
African species are dispersed by large
mammals and, reportedly, by wind (Coe
and Coe, 1987). Different populations of
Acacia ligulata in Australia seem to be
adapted to dispersal by ants or birds
(Davidson and Morton, 1984). Even if this
enormous genus is eventually split into
several new genera, the basic observation
of diversity of dispersal within a set of
related species remains valid. In the genus
Pinus, seed mass is associated with the
mode of dispersal; pine seeds weighing
less than about 100 mg are wind-dispersed,
while heavier seeds usually have adapta-
tions for bird dispersal (Benkman, 1995). In
lineages where long-distance seed disper-
sal predominates, clonal propagation has
evolved on frequent occasions, possibly to
make genet fitness less dependent on local
dispersal by seed (Eriksson, 1992).

The mode(s) of dispersal of any plant
species must reflect many different pres-
sures and constraints. Because natural
selection must work with existing variation
and many plants have very long generation
times, there are inevitable phylogenetic
constraints. Entire families or genera some-
times exhibit only slight variations on a
single mode of dispersal. However, exten-
sive variation within families (e.g.
Liliaceae), genera (e.g. Acacia, Pinus) and
species  (e.g.  Spergularia  marina,
Heterotheca latifolia) demonstrates that
such constraints are neither universal nor
totally confining.

Constraints on the evolution of dias-
pores also emerge from the many, some-
times potentially conflicting, selection
pressures that impinge on diaspore design
(e.g. Ellner and Schmida, 1981; Benkman
et al, 1984; Westoby et al, 1991;
Armstrong and Westoby, 1993; Leishman
and Westoby, 1994a, b; Kelly, 1995; Winn
and Miller, 1995; see also Leishman et al.,
Chapter 2, this volume). For example,
seeds must be endowed with adequate
resources to accomplish germination and
establishmente If these processes must take
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place in' sites where the seedling can ini-
tially mganmwoﬁni %moﬁnmm,cn its own or

in sites where intra~or interspecific compe-

£ memﬁ or seed (e.g.
01,1985;5Winn’and Miller,
ds“are:generally harder to
s~ they need larger
Jinc or more powerful
Kolly, 1995, X Thus,  selection

meo&auo maybring with it selec-

momm disparsal’ devices or‘may

constrain‘the’array of eficacious dispersal

IVery-large ‘seeds cannot go far bal-

‘listicallyzor’ by adhering to-animal exteri-

ors, they¥cannot™be’: carried by small
animals. (such as ants) and they need. very
large wings to be successfully wind-dis-
persed. One option may be dispersal by
vertebrates (Willson et al., 1990a), and
larger seeds generally require larger verte-
brates to carry them (Foster and Janson,
1985; Wheelwright, 1985; Hammond and
Brown, 1995). Even the chemical composi-
tion of seeds is associated with the disper-
sal 'mode;  wind- -and ::animal-dispersed
species generally have greater proportions
of fat and less of protein and carbohydrates
than passively dispersed seeds (Lokesha et
al.,1992). . . e
Furthermore, seeds must be protected
against the physical environment and from
natural - enemies {see Chambers and
MacMahon, 1994), and the demands of
protection may sometimes interfere with
dispersal by certain means. Also, fruits are
often photosynthetic; selection to enhance
the photosynthetic capacity -of the fruit
could affect fruit size, colour, shape and
other design features that influence disper-
sal.: In -addition, a long style can increase
the intensity of competition among male
gametophytes, but it also affects dispersal
distance - in the- ballistically dispersed
Geranium (M.F. Willson and J. Agren,
unpublished). The timing of dispersal
affects the probability and pattern of dis-
persal: and the susceptibility to enemies,
and hence can affect the selection pres-
sures on diaspore morphology. The physio-
logical costs of the various modes of

dispersal are generally unknown, but they
constitute potential constraints on the evo-
lution of dispersal devices.

Plant size and growth form show some
correlations with -dispersal mode, which

. may affect the evolution of dispersal traits

(Thompson and Rabinowitz, 1989; Willson
et al., 1990a). For instance, few plants that
are dispersed by ants or externally on ani-
mals are tall in stature. One reason may be
that tall plants typically have large crowns,
and ants commonly carry seeds for rela-
tively short distances, such that the seeds
of large-crowned, tall plants would seldom
be carried beyond the crown of the parent
and dispersal would be relatively ineffec-
tive. Ant dispersal of small acacia trees in
Australia may be the exception that proves
the rule and thus worthy of special study.
Given that a species has become tall, the
range of efficacious modes of dispersal may
be limited. Most ballistically dispersed
plants are small in stature, but at least a
few trees use this mode. Dispersal by wind
is frequent among species that are rela-
tively tall within their respective habitats
(e.g. trees in forests, tall forbs in fields).
Although some understorey plants are also
dispersed by wind, the common inference
is that relatively short stature often renders
wind dispersal less advantageous than
other modes. Stature and growth form are
sometimes correlated with seed size (Foster
and Janson, 1985; Willson et al., 1990a; but
see Kelly, 1995), which may thus influence
dispersal mode indirectly (through growth
form), as well as more directly.

Whatever the array of constraints on
diaspore evolution may be, it is also neces-
sary to ascertain the occurrence and magni-
tude of selection on dispersal traits. At
Wm& two fundamental approaches are use-

First, studies explicitly designed to
measure selection on dispersal traits are
essential. Seemingly small differences in
the design of dispersal devices can have
profound effects on dispersal ability: on
aerodynamic performance by wind-dis-
persed species (Augspurger and Franson,
1987; Matlack, 1987; Sacchi, 1987); on
capacity for attachment for diaspores car-
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ried externally by animals (Bullock and
Primack, 1977; Carlquist and Pauly, 1985;
Sorensen, 1986); on foraging preferences of
avian fruit consumers (Howe and vande
Kerckhove, 1980; Wheelwright, 1985;
Whelan and Willson, 1994; Traveset et al.,
1995; Loiselle et al., 1996; Rey et al., 1997;
Traveset and Willson, 1998); and on the
average distance of seed dispersal in a bal-
listically dispersed herb (M.F. Willson and
]. >m~m=. unpublished). Furthermore, indi-
vidual plants often differ in the allocation
of resources to dispersal devices on the
diaspore (Willson et al., 1990b; Jordano,
1995a), although the extent to which such
differences are inheritable is seldom estab-
lished (but see Wheelwright, 1993).
Individual variation in seed shadows has
been documented for a few species
(Augspurger, 1983a; McCanny and Cavers,
1987; Thiede and Augspurger, 1996;
Donochue, 1997, 1998). Such information
needs to be brought together, so that we
know the extent and pattern of individual
variation in dispersal devices: how the
variation affects the seed shadows of the
respective parents; how the seed shadow
affects parental fitness; and how these rela-
tionships vary among species and condi-
tions. Several studies have shown that
selection by avian dispersal agents may be
relatively weak (e.g. Manasse and Howe,
1983; Herrera, 1984c, 1987, 1988; Jordano,
1987, 1993, 1994, 1995a, b; Guitidn et al.,
1992; Willson and Whelan, 1993; Traveset,
1994; Whelan and Willson, 1994},
although, in most cases, fitness is indexed
by removal rates rather than by the even-
tual pattern of offspring dispersion.
Secondly, a less direct but still useful
approach is to document patterns of varia-
tion in the array of dispersal modes present
in plant communities (i.e. the dispersal
spectra of those communities). Examination
of the pattern can help generate hypotheses
about the relative advantage of different
dispersal modes in different regions and
habitats. A few patterns have begun to
emerge, but we seldom know how general
they are. One consistent trend is that a high
proportion of species in tropical wet forest
is dispersed by vertebrate consumers (see

references in Willson et al., 1989), although
there are biogeographical differences in the
strength of the trend (Karr, 1976; Snow,
1981; Fleming et al., 1987). In temperate
zones, forests commonly have more verte:
brate-dispersed species than other habitats,
and the frequency of fleshy-fruited species
is especially high in certain southern-Hemi-
sphere forests (Willson et al, 1990a)
Vertebrate dispersal apparently increasés
on moister sites, on fertile soils {in
Australia) and in floras dominated :by
shrubs and/or trees (Willson et al., 1990ak
The causal factors for such patterns are nat
yet clear. In contrast, when comparing the
seed dispersal spectra of five different
types of communities on the Iberian
Peninsula (potential woodland, forest
fringe, scrubland, nitrophile communities
and montane communities) between
Mediterranean and Eurosiberian regions,
no significant differences are found for any
type of community, although biotic disper-
sal appears to be consistently more preva-
lent at mature stages of succession (Guitidn
and Sénchez, 1992).

A conspicuous and well-documented
observation is the extraordinarily high fre-
quency of ant-dispersed species in
Australia and South Africa, particularly in
sclerophyll vegetation on infertile soils,
Several hypotheses (reviewed in Westoby
et al., 1991) have been proposed to explain
such patterns, although few have been
tested thoroughly (Hughes et al., 1993).
Seed size, the cost of dispersal structures
and the availability of dispersal agents are
among the potentially important factors.
The availability of potassium and nitrogen
in the soil may be limiting for the produc-
tion of fleshy fruits and elaiosomes, respec-
tively (Hughes et al, 1993). The
importance of seed deposition in nutrient-
enriched ant mounds is debated (e.g. Bond
and Stock, 1989) and may, indeed, vary
from place to place. Seed burial may also
protect seeds from fire or from surface-for-
aging seed predators (Bennett and Krebs,
1987). See Stiles (Chapter 5, this volume)
for further discussion of myrmecochory.

External dispersal on vertebrates is
common in riparian zones in arid parts of
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Southern Africa and in' disturbed and
grazed habitats (Sorensen, 1986; Milton et
al.; 1990;.Willson et al.,-1990a; Fischer et
al.,-19986). This pattern may reflect, in part,
the level of activity of terrestrial mammals
. in such areas:{i.e. the availability of disper-
sal agents). - oo
If -dispersal  spectra are constructed
with:some measure of abundance (number
of :-stems, percentage - cover) - instead of
species, quite different trends may appear.
For ‘example, 'ants. disperse 29% of the
herbaceous species' in a North American
deciduous forest, but ant-dispersed species
constitute 50~-60% of the stems (Handel et
al., 1981). However, such comparisons are,
at ‘present, even rarer than those based
on . species . composition (Frantzen and
Bouman, 1989; Willson et al., 1990a;
Guitidn and Sénchez, 1992). The construc-
tion of compara¥ive dispersal spectra based
,on both species counts and abundances for
many vegetation types in diverse regions
would be heuristically productive.

When are seeds dispersed?

Less seems to be known about the evolu-
tionary ecology of-the ‘when” of dispersal
than of the ‘why’ and ‘how’. Numerous
ecological factors may contribute to disper-
sal phenology. Ideally, seed maturation and
dispersal would be timed to match the sea-
sonal availability of good dispersal agents
(where required) and the availability of
good germination conditions (for seeds
lacking dormancy). Constraints on the
ideal may derive from selection to avoid
seed predators or to shift the flowering
time, as well as the length of time required
for fruit maturation. In addition, there is
environmental variation in the time of fruit
maturation and the timing of vector activ-
ity in a given area with concomitant differ-
ences in rates and quality of dispersal.

A few general patterns in dispersal
phenology have been described. Wind-dis-
persed neotropical trees often mature their
seeds during the dry season, when trade
winds are strong and trees are leafless
(Foster, 1982; Morellato and Leitao, 1996).

This contrasts with the production of
fleshy or dry fruits throughout the year (De
Lampe et al, 1992). Fleshy-fruited plants
in the north temperate zone commonly
produce mature fruit crops in late summer
and autumn, when avian frugivores are
usually abundant, but, a little further
south, more fruit maturation occurs in win-
ter, when flocks of wintering migrant birds
are foraging (Thompson and Willson, 1979;
Willson and Thompson, 1982; Herrera,
1984a, 1995; Skeate, 1987; Snow and
Snow, 1988). In contrast, ant-dispersed
plants in central North America generally
mature their seeds in early summer, at a
time when avian frugivores are relatively
few but ants are very active; given that they
bloom in early spring, if they held their
fruits until autumn, their low stature
would keep the fruits inconspicuous to
birds, beneath the foliage of other plants,
and the maturing fruits would be exposed
to predators all summer long (Thompson,
1981).

As these patterns of phenology in rela-
tion to disperser availability have emerged,
evidence has appeared that they may not
be entirely interpretable as adaptations to
dispersal. Fruiting patterns in western
Europe tend to match bird phenology at the
community level, because abundant
species with strictly northern distributions
fruit earlier than those with strictly south-
ern distributions, but wide-ranging plant
species show no latitudinal shift in fruiting
times, as would be expected if their fruit-
ing seasons were adapted to disperser phe-
nology (Fuentes, 1991; French, 1992;
Willson and Whelan, 1993). Marked
annual variation in the seasonal timing of
fruit maturation of temperate plants indi-
cates that events during earlier phases of
reproduction can have a large impact on
fruit timing and serves as a reminder that
compromises may be required between the
timing of flowering and the timing of fruit
production (see Fenner, 1998).

Eriksson and Ehrlén (1998a) have
examined structural and nutritional fea-
tures of fleshy fruits of temperate plants in
relation to phenology, finding that some
secondary compounds containing nitrogen

Ecology of Seed Dispersal 47

decrease during the season, i.e. are more
abundant in early- than in late-fruiting
species. Whether this pattern is adaptive
remains an open question. In contrast, no
phenological trends in lipid or carbohy-
drate contents were found. The adaptive
value of secondary compounds is contro-
versial. Cipollini and Levey (1997, 1998)
suggested that they probably have a spe-
cific function in the fruits, postulating dif-
ferent adaptive hypotheses, whereas Ehrlén
and Eriksson (1993) and Eriksson and
Ehrlén (1998b) argue that the distribution
patterns of secondary compounds in plant
tissues do not call for any adaptive expla-
nation of their presence in the fruits.
Another pattern that appears when com-
paring early- with late-ripening species is
in seed number per fruit, which decreases
seasonally (Eriksson and Ehrlén, 1998a);
assuming trade-offs of numbers and size,
this is attributed to developmental con-
straints imposed by a demand for a long
developmental time in large seeds or, alter-
natively, to a ‘better’ dissemination of
small seeds early in the season.

Future investigation must be directed
to unravelling both the ecological causes of
seasonal patterns of dispersal and the con-
sequences of variation in dispersal phenol-
ogy. We know very little about how much
variation occurs among individuals in the
timing of dispersal and whether this is the
result of genetic or site differences in condi-
tions controlling fruit maturation (but see,
for instance, Heideman, 1989; see also
review in van Schaik et al., 1993). We know
even less about the possibility that differ-
ences in timing of seed maturation result in
accompanying differences in seed dispersal
and offspring success. From the perspective
of animal dispersal agents, variation in tim-
ing and abundance of fruit production can
have great effects on consumers, resulting
in massive population movements (e.g. van-
der Wall and Balda, 1977; Leighton and
Leighton, 1983; Ostfeld et al., 1996; Selas,
1997; Hansson, 1998) or anmc.ovEn mor-
tality (see below), and such major effects on
the consumer community are likely to have
reciprocal, lingering effects on seed disper-
sal for several years.

For certain, wusually long-lived,
species, fruits are produced only once
every few years in an unpredictable pat-
tern. This phenomenon, called ‘masting’,
has received much attention from ecolo-
gists and from evolutionary biologists
(Kelly, 1994, and references therein). Three
types of masting are distinguished: (i) strict
masting, when the population reproduces
synchronously and the distribution of seed
crop size among years is bimodal (bam-
boos, Strobilanthes); (ii) normal masting,
when synchrony is poor and there are
many overlapping cohorts (e.g. imperfectly
synchronized monocarps and many poly-
carps; Fagus, Quercus, Pinus); and (iii)
putative masting, where variation in seed
output is due only to environmental varia-
tion, without any evolutionary signifi-
cance. A number of hypotheses (reviewed
in Kelly, 1994) have been postulated to
explain this phenomenon, the most widely
accepted being related to economy of scale
{i.e. larger reproductive efforts are more
efficient in terms of successful pollination
or seed production and survival) (e.g. Sork,
1993; Tapper, 1996; Kelly and Sullivan,
1997; Shibata et al., 1998). The great varia-
tion in fruit production from year to year
can have strong effects not only on the
recruitment of the plant population itself
(e.g. Schupp, 1990; Jones et al, 1994;
Crawley and Long, 1995; Shibata and
Nakashizuka, 1995; Forget, 1997a), but also
on the animal populations that consume
their seeds (Ostfeld et al., 1996, and refer-
ences therein; Selas, 1997; Hansson, 1998;
see also Crawley, Chapter 7, this volume).

The usefulness and ecological signifi-
cance of the masting concept have been
questioned by Herrera et al. (1998), who
argue that a critical re-examination of pat-
terns of annual variability in seed produc-
tion is necessary, as most species
apparently fall along broad continua of
interannual variability in seed production,
with no indication of multimodality (Kelly,
1994). In reviewing almost 300 data sets,
Herrera et al. (1998) failed to identify dis-
tinct groups of species with contrasting
levels of annual variability in seed output,
although most polycarpic plants had alter-
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iting supra-annual schedules, consisting
‘reither high- or low-reproduction years.
nnual'- variability - in .. seed * production
ypears:to be'weakly associated with polli-
ition mode (wind versus.animal pollina-
si)aiinccontrast, aniimal-dispersed species
otiless:variable: than'those dispersed by
ther'finanimate 'means- or -animals that
slaliy~act «as 'seed predators (Herrera et
7a1998).:; These associations - certainly
ssetve further investigation.
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ispersal of offspring away from the natal
fsis:one way that:genes move’through a
spulation’:-or'* into ¥mew'. populations.
fovement of genes also occurs at pollina-
steivin 2coutcrossing ' species. -: Paternally
ﬁugnou “genes " in~ outcrossing species
ove; twice in ‘each seed-generation, once
rring ‘pollination and again. during seed
wpersal; maternally transmitted genes in
rterossers: and- all genes in self-fertilized
eds move only once, during seed disper-
dw Thus, -in any one:seed : generation,
iternally transmitted genes are likely to
ove farther from their source than mater-
illy transmitted genes. Lloyd (1982) used
ds observation as a factor favouring the
solution of cosexuality in seed plants. He
so:noted that the difference in paternal
1dsmaternal ' gene movement is less in
lants .with very effective seed- dispersal
.g=by birds), which might facilitate the
iolution - of ‘dioecism in- bird-dispersed
lants, «: _

fwGene movement is ' often limited
ithin a population, such’ that many plant
ypulations consist of genetic:‘neighbour-
jods" of more or less related individuals
evin, 1981; Gibson and' Wheelwright,
395). Dispersal by caching animals
qrnier et al., 1987) or by animals that use
eeping sites (Julliot, 1997} or that are
tracted to infected hosts (e.g." mistletoe
ispersers: Larson, 1996) can lead to clus-
rs of related plants within populations,
7en when the seeds have been carried

long distances. Microdifferentiation of
local populations can occur on a very small
spatial scale, in response to localized selec-
tion and/or very restricted gene flow (e.g.
Schemske, 1984; Turkington and Aarssen,
1984; Parker, 1985; Berg and Hamrick,
1995; Linhart and Grant, 1996; Nagy, 1997;
Nagy and Rice, 1997). Thus, the dispersal
pattern of seeds contributes to the genetic
structure of populations and to the poten-
tial for both genetic drift and responses to
natural selection. Although some correla-
tions of dispersal mode with the degree of
local differentiation have emerged, these
correlations are not very tight, and other
factors must also contribute to observed
genetic structuring (Hamrick and Loveless,
1986; Hamrick et al., 1993; and see review
in Linhart and Grant, 1996; Schnabel et al.,

11998).

On the other hand, the at least occa-
sional passage of genes out of a local
neighbourhood or between conspecific
populations is important in maintaining
the genetic diversity of the recipient popu-
lation and presumably slows the rate of
population differentiation (e.g. Slatkin,
1987; Hamrick et al., 1993; Linhart and
Grant, 1996). To the extent that outcrossing
is advantageous, the most effective out-
breeding in populations with neighbour-
hood structure will occur when genes pass
from one neighbourhood to another. Thus,
in neighbourhood-structured populations,
the ‘best’ outcrossing is rare, by definition.
When neighbourhoods reflect ecotypic dif-
ferentiation to local conditions, however,
the ‘best’ outcrossing may occur between
individuals that are not too close together
and yet not too far apart. The concept of
‘optimal outcrossing’ has been controver-
sial, and the extent to which selection may
favour a degree of inbreeding is still
unclear (Shields, 1982; Waddington, 1983;
Jarne and Charlesworth, 1993, and refer-
ences therein). Seed dispersal patterns
have a clear potential to affect the level of
outcrossing achieved.

The demographic and evolutionary
consequences of seed dispersal began to
receive attention only a few years ago
(Houle, 1992, 1995, 1998; Herrera et al.,
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1994; Horvitz and Schemske, 1994, 1995;
Jordano and Herrera, 1995; Schupp, 1995;
Schupp and Fuentes, 1995; Shibata and
Nakashizuka, 1995; Kollman and Schill,
1996; Forget and Sabatier, 1997; Valverde
and Silvertown, 1997; Carlton and Bazzaz,
1998; Dalling et al., 1998). The scarcity of
information available on the causes and
consequences of spatial patterns of disper-
sal at a variety of scales from seeds to new
adults is certainly a major gap in our
knowledge on the ecology of seed disper-
sal. Most of the studies that consider the
multistaged nature of recruitment find no
strong and consistent relationships
between seed and seedling spatial patterns
of abundance. The causes of this ‘uncou-
pling’ are mainly attributed to the spatio-
temporal variation in the relative
importance of mortality factors (e.g. preda-
tion, pathogens, competition) for seeds and
seedlings (Houle, 1992, 1995, 1998).
Seed—seedling conflicts occur, for instance,
in those microhabitats where the probabil-
ity of seed survival is low but seedling sur-
vival is high (Jordano and Herrera, 1995).
These conflicts probably play an important
role in structuring many natural systems,
as they appear to be rather common
(Schupp, 1995). Plant population dynamics
in patchy environments depends not only
on stage-specific survival and growth in
different patches, but also on the degree of
discordance in patch suitabilities across
stages (Kollmann and Pirl, 1985; Schupp,
1995; Schupp and Fuentes, 1995;
Kollmann and Schill, 1996; Aguiar and
Sala, 1997; Forget, 1997b; Russell and
Schupp, 1998). Such discordance can have
major impacts on both the quantity and the
spatial patterning of recruits. Furthermore,
site suitability may not be independent of
seed arrival (due to density-dependent
mortality factors).

In the case of animal-dispersed plants,
the influence of frugivorous animals
depends on the extent of coupling of the
different stages in the recruitment process,
which can vary among sites and popula-
tions. Factors acting at the end of the
recruitment process can potentially ‘screen
off’ the effects acting at the beginning,

making less predictable the demographic
consequences of seed dispersal (Herrera et
al., 1994; Schupp, 1995). Intra- and inter-
population variation in the composition of
disperser assemblages visiting a plant
species has been little documented (Snow
and Snow, 1988; Reid, 1989; Guitién et al.,
1992; Jordano, 1994; Traveset, 1094;
Loiselle and Blake, 1999), despite its poten-
tial demographic importance. Different
species of frugivores generate characteristic
seed shadows, depending on foraging
behaviour, seed retention times, patterns of
fruit selection and response to the vegeta-
tion structure (Herrera, 1995; Rey, 1995). In
order to evaluate the effect of seed vectors
on plant demography we need to know the
disperser effectiveness, i.e. the proportion
of the seed crop dispersed by a particular
species (Schupp, 1993), and to examine
how suitable the microsite is where seeds
are deposited for germination and estab-
lishment. As effectiveness is difficult to
estimate in the field, Bustamante and
Canals (1995) have proposed a model to
estimate it indirectly.

Colonization and plant community structure

Dispersal mode is one factor that affects the
ability of a plant species to colonize a new
area, especially one at some distance from
the seed source. Long-distance dispersal
capacity is poorly developed in ballistic
and ant-dispersed species and much better
developed in wind- and vertebrate-dis-
persed species. Wind and birds account for
the arrival of most species in an isolated
cloud forest in Colombia (Sugden, 1982).
But wind dispersal is insufficient to result
in frequent colonization of extremely dis-
tant islands, where many colonists arrive
inside avian guts or stuck to the feathers
(good numbers also arrive, without special
devices, in the mud on birds’ feet, and
some come on ocean currents {Carlquist,
1974)). Birds may have been responsible
for post-Pleistocene colonization of habitat
islands on mountain-tops in western North
America by conifers (Wells, 1983). Many
colonists in the island flora of the Great
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Lakes are bird-dispersed, and a similar pro-
portion may travel by water (Morton and
Hogg, '+ 1989). ' Likewise, ‘a * 'study by
Whittaker and Jones (1994) showed that
30% of the flora of Krakatoa island has
-arrived - and‘expanded, since the volcanic
‘eruption in 1883, by endozoochory (specif-
ically by'birds and bats). Thus, the compo-
sition’ of island floras reflects, in part, the
dispersal ability of potential colonists. The
initial* colonization of debris avalanches
after: a’ volcanic - eruption on- Mount St
Helens, - Washington, was - accomplished
primarily -~ by - wind-dispersed species,
although colonization was independent of
distance to the source area (Dale, 1989).
The ability of a species to establish a new
population at unoccupied sites is a critical
feature ‘in-the maintenance of biological
diversity. Current habitat = fragmentation
creates barriers, to dispersal, however,
impeding the natural*dispersal of some
$pecies out of their range in response to
global climate change (Primack and Miao,
1992).

"+ Harper (1977) modified the original
model of van der Plank (1960) and sug-
gested that patterns of colonization may
differ as a function of the shape of the seed
shadow. If the slope of the regression of
seed number versus distance (on a log-log
scale) is steeper than —2, Harper proposed
that colonization' would frequently occur
by ‘fronts’ of invasion, in which phalanxes
of colonizers gradually invade new areas
relatively close to the seed source. But, if
the-slope is less steep, colonization may
occur chiefly by far-flung outposts of estab-
lishment. There is a weak association of
dispersal mode with steepness of the
log-log slopeof the seed shadow tail
{Portnoy . and Willson, 1993). However,
many other factors also affect colonization
patterns (e.g. postdispersal seed predation,
germination requirements, conditions for
dispersal).’ :

. After colonization has occurred, the
spatial distribution of the colonizers may
persist for decades or centuries, with reper-
cussions for the establishment of subse-
quent -colonists {e.g. Yarranton and
Morrison, 1974). The presence of small

trees and shrubs in an old field or pasture
often increases the deposition of bird- or
bat-dispersed seeds beneath them (see ref-
erences in Willson, 1991; Debussche and
Isenmann, 1994; Verdd and Garcfa-Fayos,
1996, 1998) and decreases the deposition
of wind-dispersed seeds (Willson and
Crome, 1989). Clusters of individuals of
fleshy-fruited species often persist even
after the initial perch tree has died. On the
other hand, the early colonizers may
inhibit further colonization if they estab-
lish themselves so densely that few other
plants can grow beneath them. Thus, some
aspects of the spatial patterning of plant
succession can be related to dispersal. In
the Mediterranean region, dispersal of
fleshy-fruited plants by birds appears to be
unimportant for plant dynamics in open
herbaceous communities and in dense
forests, but it is crucial when woody
patches appear with succession in the open
communities or when grassy patches
appear in the forest (Debussche and
Isenmann, 1994; see also Kollmann, 1995).
In desert playas of western North America,
what seems to be limiting the initiation of
primary succession is not seed dispersal
but the low rates of seed entrapment in
these habitats (Fort and Richards, 1998).

Plant dispersal and animal communities

Plant propagules (i.e. the dispersing phase
of the life history) are critical food
resources for a vast number of animal
species. Legions of insect species have spe-
cialized to a life of seed predation (both
pre- and postdispersal), and some of the
prodigious radiation of insects is associ-
ated with these specializations. Whole tax-
onomic groups of birds and mammals also
use seeds as central resources. In turnm,
these predators have exerted selection
pressures on plants to develop and diver-
sify chemical and structural defences.
Fleshy-fruited plants engage in mutu-
alisms with their dispersal agents; these
relationships are quite generalized, very
ancient, extremely widespread and extraor-
dinarily frequent in certain communities
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(see references in Willson et al, 1989,
1990a; Willson, 1993b). Many vertebrate
populations rely on fleshy fruits as food for
migration, breeding and winter mainte-
nance. Fruit resources are thought to be
crucial in sustaining certain vertebrate
populations in some tropical areas (e.g.
Terborgh, 1986; Gautier-Hion and
Michaloud, 1989; Julliot, 1997). Heavy use
of fruit resources may account for part of
the great diversity of tropical vertebrates
(Karr, 1980} and may have been related to
the radiation of certain tropical bird fami-
lies (Snow, 1981). In turn, the biotic disper-
sal of seeds seems to have contributed to
some extent to angiosperm diversification
(Tiffney and Mazer, 1995, and references
therein; but see also Ricklefs and Renner,
1994).

Non-mutualistic animals also exploit
mutualistic interactions and effectively
become parasites on the mutualistic system.
Both vertebrate and invertebrate consumers
(plus fungi and microbes) capitalize on
fleshy fruits, without dispersing the seeds.
Some insects have become fruit-pulp spe-
cialists to the extent that the radiation of
certain families (e.g. Tephritidae: Bush,
1966) is associated with this kind of para-
sitism. The effect of invertebrate parasitism
of fruit pulp on potential vertebrate disper-
sal agents varies. Although microbial and
fungal infestations generally depress effec-
tive dispersal (Knoch et al., 1993), infesta-
tion by insect larvae can either increase
or decrease fruit consumption by birds,
depending on the bird species (Willson
and Whelan, 1990; Traveset et al., 1995,
and references therein). In addition, the
foraging of frugivores may decrease the
abundance and change the distribution of
insect frugivores, with reciprocal, often
beneficial, effects on plant reproduction
(Herrera, 1984b, 1989b; but see Traveset,
1992, 1993). In sum, dispersal mutualisms
between plants and animals have had
prodigious and ramifying effects on the
animal community.

Dependence on animals for seed trans-
port means that the plants are susceptible
to dispersal failure when their seed vectors
become rare or extinct. Disruption of this

mutualism can have serious consequences
for the maintenance of the plant popula-
tions. Loss of native seed-dispersing ants
from certain habitats in South Africa
means poor seed dispersal and low seed
survival and may lead to the extinction of
many rare and endemic plants (Bond and
Slingsby, 1984; Bond, 1994). Extinction of
the dodo on Mauritius has probably
affected the population structure of the tree
whose seeds it dispersed (Temple, 1977;
but see also Owadally, 1979; Temple, 1879;
Witmer and Cheke, 1991). When a plant
has many dispersal agents (as is true for
many smail-fruited, vertebrate-dispersed
species in North America, for instance), the
loss of one species of vector may have
minor consequences for plant population
biology. However, as both temperate and
equatorial forests continue to be deci-
mated, the remnant stands are losing many
of their dispersers, with potentially severe
consequences for their continued survival.
Evidence is growing from some of the
South Pacific Islands {Cox et al., 1991) and
from Chatham Island (Given, 1995) that
disappearance of the main dispersers of
some plant species deeply alters their
reproductive success. Likewise, the exting-
tion of the Pleistocene megafauna may
have left many tropical trees with only a
few substitute dispersers {e.g. Hallwachs,
1986; but see Howe, 1985), although the
population consequences of the historical
change cannot be examined.

Phylogenetic patterns in dispersal

Dispersal modes often differ greatly within
taxonomic units, and a single mode may
arise independently many times (e.g. wind
dispersal in the legumes: Augspurger,
1989). It seems likely that some morpho-
logical transformations are more easily
made than others. For instance, a plume for
wind dispersal may be converted to a hook
for dispersal on vertebrate exteriors (e.g.
Anemone, sensu lato) or vice versa. The
loss of a wing contributed to a change from
wind to bird dispersal in Pinus but was
accompanied by changes in cone structure
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~seed size as well; nevertheless, the
t,between these two modes of dispersal
occurred several times (see Strauss and
tksen,. 1990;’ Tomback. and :Linhart,
0; Benkman,:1995); A change from bird
ant -dispersal - in- Acaciae. mecessitated
fly a:shift-in the size and colour of the
1:body attached to ‘the seed (O’Dowd
#Gill, 1986; see Fig. 4.5), but a similar
Yain } Trillium- occasioned . a . seemingly
g;complex change, from a fleshy fruit
lpsing several unappendaged seeds to a
gfruit « with ‘ .elaiosome-bearing ..seeds
8121958).. We need phylogenetic analy-
gof- whole -families - or genera with
1ect to dispersal modes to determine: (i)
4 often dispersal mode has changed
1l taxon; (ii) what the directions of
change are; (iii) what kinds of changes
most common; and (iv) for wide-rang-
taxa, how the biogeographical: history
liffgrent regions: influences the evolu-
iof diaspore traits. The answers to such
stions,.in conjunction with ecological
will contribute to our understanding
ommunity-dispersal spectra, patterns of
ction - on dispersal ‘devices and ' other
xts of population and community biol-
frelated ‘to- dispersal. A synthesis of
lern: systematics and evolutionary ecol-

s apowerful tool in elucidating ques-

8+ about: diaspore adaptation and

logenetic radiation (e.g. Wanntorp et

«1990; - Bremer and Eriksson, 1992;

Ricklefs and Renner, 1994; Tiffney and
Mazer, 1995).

Conclusion

The study of the dispersal of plants has
advanced relatively fast in the last decade,
as essential elements of the evolutionary
and ecological causes and consequences of
dispersal have been examined. The link
between seed dispersal and its demo-
graphic and genetic consequences is one
major gap that still needs to be filled,
although some recent studies are already
paying attention to it. Much remains to be
discovered yet in terms of geographical and
habitat patterns, as well as the dynamics of
colonization, population differentiation
and plant/animal interactions. Dispersal
ecology is a rapidly developing field that
still offers a wealth of investigative oppor-
tunity at levels ranging from good natural
history to sophisticated modelling and con-
ceptual synthesis.
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Chapter 5
Animals as Seed Dispersers

Edmund W. Stiles
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Animals: vectors for seed movement

Seed plants for the most part are ‘rooted’ to
one spot and have limited ability for self-
propulsion. This intimate attachment to
the soil poses interesting challenges, as
successful colonization of new sites is
dependent upon the arrival of seeds. There
are significant advantages, in the currency
of genes passed into the next generation,
for plants bearing traits that increase the
probability of successful dispersal. Seeds
falling beneath the parent plant are faced
with competition for resources with their
parent, higher levels of density-dependent
seed predation and higher densities of
competing siblings, with the associated
epidemiological problems associated with
high densities, such as fungal or viral
transmission among individuals.

Plants have evolved diverse arrays of
adaptations that result in the movement of
seeds away from their parents. Movement of
wind and water provides predictable physi-
cal forces selecting for many morphological
and phenological adaptations that facilitate
seed dispersal; but the greatest diversity of
adaptations found in the diaspores of plants
are those that facilitate seed movement by
animals. Adaptations of plant diaspores
have evolved in response to the morphology
and physiology of animals as well as the
behavioural choices made by animals.

The primary consideration in the rela-
tionship between plant seed and animal
dispersal agent is that animals are mobile,
Sessile animals are of little use in these
interactions. Beyond this basic premise,
the movement of seeds by animals is
dependent upon the diverse array of ani-
mal morphologies and behaviours.

In mobile animals, movement patterns
may transport seeds thousands of kilome-
tres with transcontinental or transoceanic
migrant birds (Proctor, 1968) or millimetres
in the guts of earthworms (Ridley, 1930).
Habitat selection by animals will dictate
the specificity of sites of seed arrival at
potential colonization locations.

The vast majority of animals that dis-
perse seeds are either vertebrates or ants.
Among the vertebrates, the birds are prob-
ably the most important seed dispersers, as
determined by numbers of successful
propagules disseminated, followed by mam-
mals, fishes, reptiles and amphibians. For
invertebrates, ants are the only major group
of seed dispersers, with small numbers of
seeds moved by molluscs and annelids.

In this chapter, I shall consider the
process of seed acquisition by animals (or
animal acquisition by seeds), the nature of
seed treatment by the animals, animal
mobility and seed deposition patterns, and
finally the diversity of animals that dis-
perse seeds.




