Widespread resistance of Mediterranean island ecosystems to the establishment of three alien species

Montserrat Vilà1*, Akis-Stavros D. Siamantziouras2, Giuseppe Brundu3, Ignazio Camarda3, Philip Lambdon4, Frédéric Médail5, Eva Moragues6, Carey M. Suehs7, Anna Traveset8, Andreas Y. Troumbis9 and Philip E. Hulme7

ABSTRACT

Although some invasive plants are cosmopolitan, not all ecosystems are invaded to the same degree. Yet there is little experimental work on how ecosystem resistance to invasion at the establishment phase differs among ecosystems. We conducted two field sowing experiments in two consecutive years to examine establishment of the deciduous tree *Ailanthus altissima*, the succulent subshrub *Carpobrotus* spp. and the annual geophyte *Oxalis pes-caprae* in coastal dunes, shrublands and oldfields in more than 200 sites across six Mediterranean Basin islands differing in climatic conditions and local species richness.

Establishment success (i.e. percentage of plots with at least one seedling) and rates (i.e. seedling to sown seed ratio) were low, especially for *Ailanthus* even when accounting for differences in seed viability. *Oxalis* was capable of producing a new cohort of seedlings the year following planting. By contrast, all *Ailanthus* seedlings and half the *Carpobrotus* seedlings died following the first summer. Differences in establishment success and rates among ecosystems were species-, island- and year-dependent.

Differences in precipitation and mean temperature were associated with differences in establishment rates across sites. Establishment rates tended to be positively correlated with cumulative precipitation and negatively with mean T°. Unexpectedly, native species richness was not a good predictor of seedling establishment, except for higher *Oxalis* establishment success in species rich habitats.

By conducting field sowing tests at multiple sites across a region we found that except for *Oxalis*, Mediterranean island ecosystems are quite resistant to invader establishment. These results suggest that differences in the degree of invasion between ecosystems and islands might be more dependent upon the influence of invasion event factors (e.g. propagule pressure) or factors acting at a later life-history stages rather than differences in the resistance imposed by ecosystems to invader recruitment. Moreover, our results support the notion that in Mediterranean ecosystems invasions are highly idiosyncratic events and strongly dependent on water availability conditions.

Keywords


INTRODUCTION

Many ecosystems around the world are invaded by non-native species that have been introduced deliberately or accidentally by humans. The local and regional abundance of aliens (i.e. degree of invasion) depends upon historical factors (e.g. number, frequency and time since introduction), the species potential to invade (i.e. invasiveness) and ecosystem resistance to invasion (i.e. invasibility). Disentangling these three components is essential, as observed patterns may mistakenly suggest ecosystem resistance when in fact the absence of invasive species is a result of low propagule pressure (Lonsdale, 1999). Moreover, there is evidence that there is only a limited overlap in alien species identity across ecosystems and regions (Lloret et al., 2008).
Despite a high similarity in the degree of invasion across habitats (Chytry et al., 2008), suggests that invasibility has to be tested for different species independently of their propagule pressure.

Ecosystem invasibility is determined by biotic and environmental factors (Lonsdale, 1999). Species richness has received high attention as a biotic predictor of invasibility (Levine & D’Antonio, 1999; Shea & Chesson, 2002; Levine et al., 2004), and most manipulative studies have found that establishment of non-resident species (i.e., not necessarily alien species) to an ecosystem is constrained by local species richness (Robinson et al., 1995; Levine, 2000). Experiments have been performed in particular ecosystem types by assembling a gradient of species richness from a selected species pool. Consequently, it is not known whether species richness might also drive differences in invasibility across ecosystems.

Another factor determining invasibility is climate. Most successful introduced plants are pre-adapted to the climatic conditions in the recipient ecosystem. In Mediterranean ecosystems where climate is characterized by hot, dry summers, water availability often limits plant establishment and biomass production (Thompson, 2005). Moreover, Mediterranean ecosystems are predicted to be very susceptible to water availability fluctuations caused by climate change (Lavorel et al., 1998), which will possibly modify species distributions and plant–plant interactions. In this scenario, differences in climatic conditions within ecosystems might be relevant for plant invader establishment.

Furthermore, the influence of species traits on the ability to invade certain ecosystems suggests that invasibility is dependent on invader identity and therefore invasibility is not a fixed attribute of an ecosystem (Lloret et al., 2005). Rather, because invasibility is determined by the interaction of the introduced species with the resident biota and the limits imposed by environmental constraints, invasibility of a particular ecosystem seems to be context and time specific (Thomsen et al., 2006). Only by comparing how a range of different species invade the same set of ecosystems might we be able to discern how much differences in the degree of invasion among ecosystems depend upon the characteristics of the receptor ecosystem or of the invader species (Mitchell et al., 2006).

Invasibility depends on the likelihood of alien species establishing and dominating in the long term (Huston, 2004). Several field experiments have tested how invasibility differs among ecosystems using sowing or transplant experiments in different ecosystems across sites (D’Antonio, 1993; Larson et al., 2001; Lambrinos, 2002; Kollmann et al., 2007). However, most of these studies were restricted to particular landscapes with very few replicates or even with pseudoreplicated experimental designs (Hurlbert, 1984).

Islands are highly vulnerable to invasions (Elton, 1958; McDonald & Cooper, 1995) compared to adjacent mainland areas, and Mediterranean Basin islands are no exception (Hułme, 2004; Gimeno et al., 2006; Hułme et al., 2008). For example, Lloret et al. (2004) found over 400 introduced plant species on only eight principal islands of the Mediterranean Basin. Nevertheless, considerable differences occur in the number of alien species found among ecosystems. Notably, Mediterranean woodlands, even if extensive and exposed to invader pressure, contain a low proportion and abundance of invaders compared to grasslands, oldfields and ruderal ecosystems (Vilà et al., 2007). However, despite the wide distribution and frequent proximity of such ecosystems, no study has experimentally compared the extent to which Mediterranean ecosystems differ in their invasibility.

Mediterranean Basin islands are a hotspot of biodiversity (Médail & Quézel, 1997), with the climate determining high variability in plant establishment between areas and years (Cowling et al., 2005). Mediterranean islands therefore represent an outstanding opportunity to assess variation in ecosystem resistance to invasions within a single biome and to scale up from local to regional implications (Hierro et al., 2005). We conducted identical, multiple propagule, sowing experiments to assess the regional consistency in early establishment of plant invaders as a proxy for invasibility. We focused on invaders with contrasting life-forms: the deciduous tree Ailanthus altissima (P. Mill) Swingle (Simaroubaceae), the succulent subshrubs Carpobrotus spp. (Aizoaceae) and the annual geophyte Oxalis pes-caprae L. (Oxalidaceae).

The main goal of this study is to test to what extent the degree of invasion can be attributed to differences in plant establishment and whether differences among ecosystems are spatially and temporally consistent. Specifically, we addressed the following questions: (1) Are there differences in early establishment among ecosystems? (2) Are differences dependent on species identity? (3) Are ecosystem differences consistent across islands? (4) Are spatial differences related to climatic conditions and to local species richness? Based on observed ecosystem differences in the occurrence of invaders across Mediterranean Basin islands (Table 1), we anticipate Oxalis to be the most invasive, followed by Carpobrotus and then Ailanthus; and we expect seedling establishment to be the highest in oldfields, the lowest in shrublands and intermediate in coastal dunes. To our knowledge, this is the most extensive field sowing experiment testing seedling establishment across a region.

**METHODS**

**Study area and invasive taxa**

Of the nearly 5000 islands in the Mediterranean Basin, six were chosen as representative in terms of range of island size, isolation and geographical location according to an East-West gradient: Crete and Lesbos in Greece, Sardinia in Italy, Porquerolles in France, as well as Mallorca and Menorca in Spain.

Three of the most common and widespread invasive alien plant taxa in Mediterranean ecosystems (Hułme, 2004; Hułme et al., 2008) were selected for study and are known to occur in different ecosystems and have a range of possible impacts on native systems (Vilà et al., 2006b):

*Ailanthus altissima* (P. Mill.) Swingle, native to China and mainly used for ornamental and landscaping purposes, is able to resprout and develop root networks that form dense clonal...
stands (Kowarik, 1995). Seedling recruitment also occurs from wind dispersed samaras (Kowarik & Säumel, 2007). It is common in disturbed urban areas, oldfields, along roadsides, woodland edges and forest openings throughout Europe (Kowarik & Säumel, 2007).

*Carpobrotus acinaciformis* (L.) Bol. and *C. edulis* (L.). N.E. Br. are succulent, mat-forming perennial herbs native to South Africa and introduced as ornamentals (Wisura & Glen, 1993). These two species and their hybrids (Suehs et al., 2004) are now widely naturalized in Mediterranean coastal habitats, and are considered as a serious threat to several endemic and rare plant species (Draper et al., 2003). Successful seed establishment is highly dependent on seed dispersal by native or introduced mammals and a lack of competition with the resident vegetation (Vila & D’Antonio, 1998; Bourgeois et al., 2005).

*Oxalis pes-caprae* L. was accidentally introduced from South Africa in many Mediterranean regions of the world since the beginning of the 19th century (Peirce, 1997; Rottenberg & Parker, 2004). It is the most widespread and abundant invader across the Mediterranean Basin (Gimeno et al., 2006; Hulme et al., 2008). *Oxalis* spreads vegetatively by means of underground bulbs. No sexual reproduction has been observed in the introduced range (Galil, 1968). The probability of bulb establishment and seedling survival is high (Vila & D’Antonio, 1998; Bourgeois et al., 2005).

<table>
<thead>
<tr>
<th>Island</th>
<th>Ailanthus Dunes</th>
<th>Shrublands</th>
<th>Oldfields</th>
<th>Carpobrotus Dunes</th>
<th>Shrublands</th>
<th>Oldfields</th>
<th>Oxalis Dunes</th>
<th>Shrublands</th>
<th>Oldfields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crete</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Lesbos</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Mallorca</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Menorca</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Porquerolles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sardinia</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

### Seeding experiments

In fall 2001, we selected up to 10 sites per ecosystem and island. In each site, four 1 m² plots were established at least 2 m apart from each other. To homogenize experimental conditions across sites as much as possible we tried to place plots in open undisturbed areas within the vegetation matrix. Each plot was randomly assigned to one of the following propagule addition treatments: 1000 *Carpobrotus* seeds, 100 *Ailanthus* seeds or 100 *Oxalis* bulbs, no propagules added (control). These values were of a similar order to the propagule banks in invaded areas or previously conducted seed addition experiments (Vila et al., 2006a for *Oxalis*, Kowarik & Säumel, 2007 review for *Carpobrotus*). Propagules were collected from several locations within each island in which they were sown but prior to sowing aborted or damaged propagules were discarded. Before experimentation we tested seed and bulb viability by greenhouse germination tests. On average, germination was 37% for *Ailanthus*, 39% for *Carpobrotus* and 95% for *Oxalis*. Propagules were sown within 1 cm of the soil surface and to ensure an even distribution across the plots one quarter of the propagules were sown in a central 20 cm² square, whereas the remainder was spread over the remainder of the plot. For conservation reasons, *Oxalis* bulbs were not planted in dunes either in Mallorca or in Menorca (Table 2). We counted seedling density in April–May 2002 and 2003. We did not label seedlings but by comparing the size of the seedlings during our surveys we think that seedlings present in the second year after sowing were survivors rather than new germinants from the sown seeds except for *Oxalis* (see succeeding discussions).

In fall 2002, the experiment was repeated in most sites. New plots were established 2 m apart from those of the previous year and seedling density was recorded in April–May 2003. In January 2003 (only first experiment), 2004, 2005 and 2006 we revisited the sites, pulled up and killed all emerged seedlings to prevent invasion of the sites by the three planted species.

For both experiments we estimated early establishment success and establishment rates. Establishment success was calculated as the percentage of plots with at least one seedling. Establishment rates were measured as the ratio between the...
number of seedlings in the first or second spring after sowing and the number of propagules sown at the beginning of the experiment. As Oxalis is an annual geophyte and could produce a bulb bank one year after sowing, in spring 2002 we counted the number of seedlings, and seedling density was considered as an equivalent measure of establishment rate for the second year after sowing.

Before setting up the 2001 experiment, for most sites we conducted a floristic survey and quantified species richness as the local number of species. During both experiments we recorded island precipitation and mean temperature for the period between sowing and sampling (September–May). Where available, climate data were recorded from the nearest weather station to each site.

### Statistical analysis

By the end of the experiments some plots and sites had been destroyed or lost due to disturbance and vandalism resulting in an unbalanced data set that consisted of 925 plots.

Differences among species, ecosystems and islands in establishment success (i.e. percentage of plots with at least one seedling) one year after sowing were compared with a $\chi^2$-goodness-of-fit test. Differences in establishment rates and seedling density for Oxalis for islands with successful establishment were analysed using generalized linear models (GLM) with island included as a random factor and ecosystem nested within island as a fixed factor. A different analysis was conducted for each species and year. Where differences among ecosystems were significant, differences within islands were tested using ANOVA or $t$-tests if data met the assumptions of parametric analysis after data transformation or by Kruskall–Wallis or Mann–Whitney’s tests when data did not meet such assumptions. When a significant ecosystem effect was detected, pairwise comparisons were performed using a Tukey test. All tests were performed with SPSS, Inc. software.

For each species and experiment, we tested if there was a relationship between species establishment success as a binary dependent variable (seedlings present or absent) and cumulative precipitation, mean temperature and local species richness as independent variables in logistic regressions. Correlations were also conducted between establishment rates and the three previously mentioned independent variables. Because species richness of the sites was only assessed during the first experiment, this variable was only included in models for 2001 data. Species richness was log transformed before analysis to meet the assumptions of parametric statistics. Throughout the text all mean values are accompanied by their standard errors unless otherwise indicated.

### RESULTS

#### Climatic conditions across islands

On average, cumulative precipitation and temperature were higher in the second than in the first year (precipitation: paired $t$-test $= -2.76$, d.f. = 149, $P = 0.006$; $T^\circ$: paired $t$-test $= -11.87$, d.f. = 149, $P < 0.0001$). Both years, were wetter but warmer than average (compared to mean values from late XIX to late XX century at http://www.worldclimate.com). Both variables were significantly different among islands (Fig. 1). For precipitation, the pattern among islands was different between years (2001: $F_{5,145} = 57.81$, $P < 0.0001$; 2002: $F_{5,174} = 37.77$, $P < 0.0001$). For example, in 2001 Crete had the lowest precipitation record while in 2002 it had one of the highest. Differences in $T^\circ$ among islands followed a more consistent pattern between years (2001: $F_{5,145} = 318.98$, $P < 0.0001$; 2002: $F_{5,174} = 327.79$, $P < 0.0001$) being always lowest in Porquerolles and highest in Crete (Fig. 1).

#### Species richness across islands

Species richness was significantly different across islands ($F_{5,162} = 30.02$, $P < 0.0001$) being highest in Crete and Lesbos and lowest in Mallorca, Porquerolles and Sardinia. Differences were also significant between habitats (ANOVA with habitats nested within islands: $F_{5,162} = 10.67$, $P < 0.0001$). On average, oldfields followed by shrublands were significantly more species rich than dunes but this pattern was not consistent across islands (Fig. 3).

#### Establishment success

On average and for all three species, establishment success was larger in the second (49.74%) than in the first experimental sowing (21.21%) matching the higher precipitation and $T^\circ$ recorded in the second period compared with the first (Figs 1 & 2). However,
Invasibility in Mediterranean islands

Figure 1 Mean T and cumulative precipitation for the 2001 (black) and 2002 (white) sowing experiment in Crete, Lesbos, Mallorca, Menorca, Porquerolles and Sardinia.

Figure 2 Establishment success (i.e. percentage of plots with at least one seedling) for the 2001 (first column) and 2002 (second column) sowing experiment in Crete, Lesbos, Mallorca, Menorca, Porquerolles and Sardinia. Notice that scales are not the same for the three species.
except for a positive relationship between $T^*$ and *Oxalis* establishment success for the first experiment, there was no significant association between establishment success and climatic conditions for any species or experiment (Appendix 1). Successful establishment was positively related to species richness only for *Oxalis* (Appendix 1).

Independent of the initial year of sowing there were also significant differences among species (2001: $\chi^2 = 24.49$, 2002: $\chi^2 = 76.37$, both $P < 0.0001$). *Ailanthus* always had the lowest establishment success (2001: 7.41%; 2002: 10.84%). In fact, in the first experiment, no *Ailanthus* establishment occurred at all in Menorca, Porquerolles and Sardinia (Table 2). In the first year, establishment success was not significantly different between *Carpobrotus* (25%) and *Oxalis* (28.57%). In contrast, for the 2002 sowing, it was lower for *Carpobrotus* (56.89%) than for *Oxalis* (76.25%).

Although in the 2001 sowing there were no significant differences in establishment success among ecosystems ($\chi^2 = 0.41$, $P = 0.82$), for the 2002 sowing it was significantly lower in oldfields than in dunes and shrublands ($\chi^2 = 6.34$, $P < 0.05$). Significant island differences were found only in the first experiment (2001: $\chi^2 = 33.89$, $P < 0.0001$; 2002: $\chi^2 = 3.43$, $P < 0.64$). For the 2001 sowing the lowest establishment success occurred in Sardinia and there were no significant differences among the rest of the islands.

**Establishment rates**

On average, establishment rates were rather low, and especially so for *Ailanthus* (Fig. 4). For this species, there were no significant differences among islands and among ecosystems in either experiment (Table 3), probably due to its low establishment success. Two years after sowing, seedling mortality was high. By spring 2003, all *Ailanthus* seedlings from the 2001 sowing had died except for a single seedling in each of three plots (one plot in a dune in Crete, and two plots in oldfields in Mallorca and Menorca).

For *Carpobrotus*, there were no significant differences among islands but ecosystems differed (Table 3): overall, oldfields had higher values than dunes and shrublands in the 2001 experiment, but in the 2002 experiment oldfields had the smallest establishment rates (Fig. 5). One year after sowing, seedling density decreased more than 50%; dunes were the habitat with the smallest establishment (data not shown).

For *Oxalis*, establishment rates were significantly different among islands and ecosystems (Table 3), being highest in Lesbos and lowest in Porquerolles and Sardinia in the 2001 experiment; and higher in Porquerolles and Sardinia than in the other islands in the 2002 experiment. On average, establishment rates were significantly higher in oldfields than in the other ecosystems, but in some islands these differences were not significant (Fig. 6).

*Oxalis* produced a new cohort of seedlings the following year after planting (Fig. 7). Seedling density almost doubled in Crete and Menorca. In spring 2003, seedling density was higher in oldfields and shrublands than in dunes, and this was consistent among islands (Table 3).

Except for *Ailanthus*, which had an extremely low establishment success as well as low establishment rates, establishment rates tended to be positively correlated with cumulative precipitation and negatively with mean $T^*$ (Appendix 2). However, there was no significant association with local species richness (Appendix 2).
Invasibility in Mediterranean islands

Figure 4 Means (+ standard error) for *Ailanthus* spring establishment rates in different ecosystem types in Crete, Lesbos, Mallorca, Menorca, Porquerolles and Sardinia arising from experimental sowing of 100 seeds in 2001 and 2002. There were no significant ecosystem differences.

Table 3 ANOVA results for the influence of ecosystem on establishment rates across six Mediterranean Basin islands (sowing year/sampling year). The ANOVA for *Oxalis* sown in 2001 and sampled in 2003 corresponds to seedling density.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F value(d.f.)</td>
<td>P</td>
<td>F value(d.f.)</td>
</tr>
<tr>
<td></td>
<td>(F(5,12) = 2.140)</td>
<td>0.130</td>
<td>(F(5,12) = 2.217)</td>
</tr>
<tr>
<td></td>
<td>(F(5,12) = 1.741)</td>
<td>0.064</td>
<td>(F(5,12) = 3.707)</td>
</tr>
<tr>
<td></td>
<td>(F(5,12) = 1.085)</td>
<td>0.377</td>
<td>(F(5,12) = 3.871)</td>
</tr>
<tr>
<td></td>
<td>(F(5,12) = 0.518)</td>
<td>0.758</td>
<td>(F(5,12) = 1.316)</td>
</tr>
<tr>
<td></td>
<td>(F(5,12) = 1.085)</td>
<td>0.377</td>
<td>(F(5,12) = 3.871)</td>
</tr>
<tr>
<td></td>
<td>(F(5,12) = 2.140)</td>
<td>0.130</td>
<td>(F(5,12) = 2.217)</td>
</tr>
<tr>
<td></td>
<td>(F(5,12) = 1.741)</td>
<td>0.064</td>
<td>(F(5,12) = 3.707)</td>
</tr>
<tr>
<td></td>
<td>(F(5,12) = 1.085)</td>
<td>0.377</td>
<td>(F(5,12) = 3.871)</td>
</tr>
</tbody>
</table>
DISCUSSION

We found spatially and temporally consistent differences in invasiveness between the three species. As expected, the likelihood of establishment and seedling survival was extremely poor in Ailanthus, poor in Carpobrotus and good in Oxalis. In fact, during our removal visits the following three years after the experiments, no Ailanthus or Carpobrotus seedling were found, whereas Oxalis persisted. These low establishment rates, especially for Ailanthus contrast with other field sowing experiments conducted in less water limited ecosystems (e.g. Kowarik & Säumel, 2007 review for Ailanthus; D’Antonio, 1993 for Carpobrotus).

These species differences in establishment rates could be explained by both differences in seed viability (see Methods: Seedling experiment section) and failure to establish. When accounting for differences in the proportion of viable propagules sown, establishment rates still remained lower for Ailanthus (mean value between the two experiments: 1.93%) and Carpobrotus (10.98%) than for Oxalis (19.68%).

We acknowledge that our study only explored early seedling establishment and the analysis of invasibility for long-lived species should also include the probability to dominate over a longer time frame (Huston, 2004). Despite this, differences in invasiveness between the three species match both the local and regional
abundance of the three species across these islands (Table 1). Oxalis is the most locally abundant and widespread species of the three in the Mediterranean Basin islands, invading a wide range of ecosystems (Gimeno et al., 2006; Hulme et al., 2008). Carpobrotus is also a rather widespread species across islands, but mainly found in coastal areas (Hulme et al., 2008) where it has high clonal growth. Finally, although Ailanthus can become locally dominant forming dense clonal stands, it is not frequently found into undisturbed natural ecosystems. As we only compared three phylogenetically very distinct species, it would be inappropriate to relate differences in establishment to specific species traits such as seed size or growth form.

Except for Ailanthus, which was consistent in dying in most sites, establishment differed among ecosystems. However, our results do not support that oldfields are consistently more invisible than coastal dunes and shrublands. Mediterranean woody ecosystems generally have a low degree of invasion (Brundu et al., 2003; Pino et al., 2005; Vilà et al., 2007). However, we have found that the likelihood of shrubland invasion might not differ from oldfields, even for species usually not found there. This result suggests that the general low degree of invasion in Mediterranean shrublands might not be related to low invasibility of this ecosystem type per se but to low propagule supply or to limiting ecological factors acting at later life-history stages (Williamson & Harrison, 2002; von Holle & Simberloff, 2005).

Ecosystem differences were spatially and temporally variable. For example, establishment rates for Oxalis in dunes were lower than in oldfields in Lesbos and Mallorca, but not in Sardinia. These differences could not be explained by resistance imposed by local species richness except for higher Oxalis establishment success in species-rich ecosystems. Studies that have found a negative effect of native species richness on invader establishment have been conducted at small spatial scales, using herbaceous target species, ensuring that the invader interacts with immediate neighbours (Fridley et al., 2004). Only when the neighbourhood setting influences the invader recruitment by modifying cover or
root overlap is a negative relationship likely to be found (Levine, 2000). Our experiment did not manipulate native species identity and species richness in the recipient ecosystems; in fact, many plots were located in open microsites outside a major influence of mature native plants. Therefore, our study does not reflect the intrinsic effects of diversity operating at neighbourhood scales, rather results are more in accordance with results found in floristic surveys than in experimental setting (Levine & D’Antonio, 1999). Our study supports results from observational studies that have found native rich habitats not to be immune to plant invaders (Stohlgren et al., 1999; Stohlgren & Chong, 2002). Differences within and between ecosystems might be modulated by microsite heterogeneity with regard to soil quality, compaction or water and nutrient availability; as well as biotic constraints such as seed predators or herbivores interacting in complex ways (Mazia et al., 2001; Renne et al., 2006).

Similarly, we found large inter-annual variations. The lower establishment success and establishment rates from the sowing undertaken in 2001 compared to the 2002, and the high summer mortality were most likely caused by strong water limitation. In Mediterranean ecosystems, high summer water stress is known to decrease the likelihood of invasion (Thomsen et al., 2006). These findings suggest that timing and ecosystem vulnerability to invasion might be largely dependent on water availability conditions triggering plant recruitment as proposed by the resource pulse hypothesis (Davis et al., 2000; Renne et al., 2006). Therefore, microsite soil differences in water retention as well as extreme events might play an important role in determining seedling establishment.

Although our study was conducted over a short time frame it highlights a high resistance of Mediterranean ecosystems to invasion (di Castri, 1990) in terms of recruitment limitation even to common invaders already occurring in the region. The establishment of invaders seem not to be an intrinsic property of a particular ecosystem type (Renne et al., 2006) because seedling establishment differences between ecosystems were not consistent across islands nor years, and were dependent on invader identity and climatic constraints. Furthermore, our results suggest that there is not an association between the degree of invasion and the resistance imposed by the ecosystem to invasion, indicating that the variation in the degree of invasion is probably highly related to historical events such as propagule pressure or time since introduction (Pyšek & Jarosík, 2005; von Holle et al., 2005). Our study represents the worst case scenario in terms of the species, the climatic conditions experienced and the geographical area assayed. That is, the three species are some of the most widespread invasive plants in Mediterranean islands. Precipitation in both years was moderately high compared to average long-term series. Finally, according to the received wisdom on plant invasions (Rejmanek et al., 2005), even lower recruitment success would be expected if less invasive species were tested and if the experiment were conducted in mainland Mediterranean areas. More generalities could be drawn if the study was conducted over a longer timeframe, essaying more species in parallel mainland ecosystems.

ACKNOWLEDGEMENTS

We gratefully thank M.C. de la Bandera, L. Carta, A. Galanidis, I. Gimeno, M. Manca, L. Marco, I. Mprezetou and G. Vacca for field assistance, Michael Huston and two referees for thorough comments to a previous version of the manuscript. This study is part of the European Commission 5th Framework project EPIDEMIE-Exotic Plant Invasions: Deleterious Effects on Mediterranean Island Ecosystems (www.ceh.ac.uk/epidemie, contract EVK2-CT-2000-00074) and the Integrated European Commission 6th Framework project ALARM-Assessing Large Scale Risks to Biodiversity with Tested Methods (http://www.alarmproject.net, contract GOCE-CT-2003-506675).

REFERENCES


Invasibility in Mediterranean islands


Editor: Michael Huston
### Appendix 1
Mean (± SE) cumulative precipitation, Tª and local species richness in plots with and without seedling establishment after the 2001 and 2002 sowing experiment across six Mediterranean islands. Differences between plots according to a logistic regression are indicated for each invasive species and experiment. The influence of local species richness was only tested for the first experiment.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ailanthus</td>
<td>744.65 ± 69.50</td>
<td>609.32 ± 15.11</td>
<td>3.19</td>
<td>0.07</td>
<td>695.86 ± 49.20</td>
<td>653.88 ± 17.46</td>
<td>0.06</td>
<td>0.81</td>
</tr>
<tr>
<td>Carpobrotus</td>
<td>648.06 ± 27.07</td>
<td>601.39 ± 17.75</td>
<td>2.05</td>
<td>0.15</td>
<td>643.87 ± 18.75</td>
<td>675.50 ± 21.54</td>
<td>1.24</td>
<td>0.26</td>
</tr>
<tr>
<td>Oxalis</td>
<td>508.96 ± 32.60</td>
<td>537.16 ± 20.62</td>
<td>0.55</td>
<td>0.46</td>
<td>648.90 ± 18.87</td>
<td>687.81 ± 34.30</td>
<td>0.76</td>
<td>0.38</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ailanthus</td>
<td>17.08 ± 0.65</td>
<td>16.38 ± 0.14</td>
<td>1.15</td>
<td>0.28</td>
<td>16.97 ± 0.36</td>
<td>16.86 ± 0.13</td>
<td>0.01</td>
<td>0.92</td>
</tr>
<tr>
<td>Carpobrotus</td>
<td>16.32 ± 0.25</td>
<td>16.45 ± 0.16</td>
<td>0.19</td>
<td>0.66</td>
<td>16.85 ± 0.14</td>
<td>17.25 ± 0.16</td>
<td>3.45</td>
<td>0.06</td>
</tr>
<tr>
<td>Oxalis</td>
<td>18.11 ± 0.26</td>
<td>17.01 ± 0.16</td>
<td>12.55</td>
<td>0.0004</td>
<td>16.87 ± 0.14</td>
<td>16.82 ± 0.25</td>
<td>0.023</td>
<td>0.88</td>
</tr>
<tr>
<td>Species richness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ailanthus</td>
<td>9.70 ± 2.64</td>
<td>12.27 ± 0.78</td>
<td>0.98</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpobrotus</td>
<td>10.55 ± 1.57</td>
<td>12.51 ± 0.84</td>
<td>1.29</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalis</td>
<td>21.70 ± 1.72</td>
<td>10.68 ± 1.21</td>
<td>23.35</td>
<td>&lt;0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Appendix 2
Correlation analysis between establishment rates and cumulative precipitation, Tª and local species richness in plots with successful seedling establishment after the 2001 and 2002 sowing experiment across six Mediterranean islands. The influence of local species richness was only tested for the first experiment.

<table>
<thead>
<tr>
<th>Species</th>
<th>2001 z value</th>
<th>2001 P</th>
<th>2002 z value</th>
<th>2002 P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ailanthus</td>
<td>0.84</td>
<td>0.40</td>
<td>−0.99</td>
<td>0.32</td>
</tr>
<tr>
<td>Carpobrotus</td>
<td>3.64</td>
<td>0.0003</td>
<td>−0.90</td>
<td>0.37</td>
</tr>
<tr>
<td>Oxalis</td>
<td>2.62</td>
<td>0.009</td>
<td>2.79</td>
<td>0.005</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ailanthus</td>
<td>−0.80</td>
<td>0.42</td>
<td>0.08</td>
<td>0.94</td>
</tr>
<tr>
<td>Carpobrotus</td>
<td>0.75</td>
<td>0.45</td>
<td>−2.87</td>
<td>0.004</td>
</tr>
<tr>
<td>Oxalis</td>
<td>−2.66</td>
<td>0.008</td>
<td>−4.42</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Species richness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ailanthus</td>
<td>−0.24</td>
<td>0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpobrotus</td>
<td>−0.18</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalis</td>
<td>−0.75</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>