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Downscaling networks from species to individuals is a useful approach to incorporate inter-individual variation and to 
investigate whether topology of species-based networks results from processes acting at the scale of individuals, such as 
foraging behaviour. Here, we analyzed pollen-transport networks at two scales, i.e. pollinator species–plant species (sp–sp) 
and pollinator individuals–plant species (i–sp), and assessed whether modularity – a prevalent pattern in most pollination 
networks – is consistent across both scales. To test this we use three different algorithms developed for the calculation  
of modularity (unipartite, bipartite and weighted bipartite modularity) and compare the results obtained. Downscaling 
networks revealed a higher modular structure in i–sp networks than in sp–sp networks, regardless of the modular metric 
used. Using a null model approach, we show that modularity at the individual scale is originated by the existence of a 
high heterogeneity and specialization in the partition of pollen resources among conspecific individuals, a pattern which 
obviously cannot be observed at the species level. Modules in i–sp networks consisted of individuals sometimes neither 
taxonomically nor functionally related, but sharing common pollen resources at different moments of the flowering season. 
Interestingly, conspecific individuals may belong to different modules. Both plant and insect phenologies were important 
drivers of the modularity detected in individual-based networks, even determining the topological roles of nodes in the 
networks. A temporal turnover of modules was identified, i.e. modules of individuals assembled and disassembled over time 
as species modify their foraging choices throughout the flowering season adjusting to ecological conditions. Downscaling 
from species to individual-based networks is a promising approach to study the interplay among structural patterns and 
processes at different, but interdependent organizational levels.

Interactions between plants and their pollinators can be  
represented at the community level using complex networks. 
Such real networks have topological features, which dif-
fer from randomly constructed networks (Bascompte and  
Jordano 2007). Detection of community structure within 
these networks is important in order to further identify the 
underlying ecological and evolutionary processes causing 
them (Lewinsohn et al. 2006) and to determine the poten-
tial consequences of such patterns for network stability and 
dynamics (Tylianakis et  al. 2010). Nestedness and modu-
larity are two of the patterns most frequently investigated 
in plant-pollinator mutualistic networks (Bascompte et  al. 
2003, Olesen et  al. 2007). Both can coexist in the same  
network, being complementary rather than exclusive; even 
single modules are often nested (Lewinsohn et  al. 2006, 
Olesen et  al. 2007), although the correlation between  
modularity and nestedness depends on network connectance 
(Fortuna et al. 2010).

A species–species network has a nested link pattern if 
specialist species interact with proper subsets of the species 
interacting with the more generalist ones (Bascompte et al. 
2003). On the other hand, a modular pattern consists of 
densely connected groups of species with sparse connections  

to species in other groups (Olesen et al. 2007). These strongly 
linked subgroups are called modules or compartments. 
Complex algorithms are needed to identify them (Guimerà 
and Amaral 2005b). Depending on the pattern of within 
and between-module connections, species can be classified 
into different topological roles (Guimerà and Amaral 2005a,  
Olesen et  al. 2007). Especially, regarding their species  
composition, modules have been viewed as potentially co-
evolutionary units of biological significance (Olesen et  al. 
2007, Dupont and Olesen 2009, Donatti et al. 2011).

A modular structure is derived from constraints in the 
interactions. Modularity in different kinds of network 
is indeed associated with a variety of ecological factors  
and explanatory processes (Bascompte and Olesen in  
press), such as: 1) convergence in pollination syndromes 
(Danieli-Silva et  al. 2012); 2) phylogeny and body mass 
in food webs (Rezende et  al. 2009); 3) trophic specializa-
tion and host range selection in plant–herbivore interac-
tions (Prado and Lewinsohn 2004); 4) species phenology 
in plant–pollinator networks (Bosch et  al. 2009, Martín 
González et  al. 2012); 5) species niche organization and  
diet in food webs (Guimerà et  al. 2010) and 6) spatial or 
habitat segregation (Fortuna et  al. 2009, Dupont et  al. 
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2014). However, the degree of modularity and the number  
of modules in a network can be constant over time- 
cumulative periods (Dupont and Olesen 2012).

Modularity is a topological property important for  
network robustness. It may increase overall network stability 
because the spreading of perturbations across weakly con-
nected modules occurs slowly so that effects stay embed-
ded within modules (Fortuna et  al. 2009, Stouffer and  
Bascompte 2011). The relationship between modularity and 
stability, however, may depend on whether the interaction is 
mutualistic or antagonistic (Thébault and Fontaine 2010) as 
well as on the specific type of perturbation.

Most networks studied to date are constructed at the 
species level, i.e. they represent interactions among species. 
However, a species is in fact a population of phenotypically 
diverse individuals, so species-based networks overlook the 
existing intraspecific variation. Individual variation within 
natural populations is a fundamental factor in ecological and 
evolutionary processes (Darwin 1859, Bolnick et al. 2011, 
Dall et  al. 2012, Wolf and Weissing 2012). Ecologically, 
variation in traits (e.g. size, sex, age, social status) determines 
differences in foraging behaviours and resource use among 
individuals (Bolnick et al. 2003, Araújo et al. 2011), which 
in turn might affect structure, dynamics and stability of eco-
logical interactions at a community scale (Beckerman et al. 
2006, Bolnick et al. 2011). Therefore, downscaling networks 
from species-level to individual-level is a fundamental step 
for linking individuals to population dynamics and com-
munity structure (Ings et al. 2009, Beckerman et al. 2010), 
but also a way to link community biology to natural selec-
tion. For instance, further research is needed to investigate 
whether the structural properties described in species-based 
networks are maintained in individual-based networks or  
not (Tur et  al. 2014), and which are the drivers behind  
patterns detected at the individual level.

Here, we investigate consistency of the modular pattern 
to network downscaling from species to individuals. We 
constructed pollen-transport networks from two mountain 
habitats at both species level (pollinator species–plant species 
network; hereafter sp–sp) and individual level (individual 
pollinator–plant species network; hereafter i–sp) by studying 
the pollen loads of insect flower-visitors. First, we explore  
modularity at both levels (i.e. species and individuals)  
using different modularity metrics – unipartite modularity 
(Newman and Girvan 2004, Guimerà and Amaral 2005a, 
Olesen et al. 2007), bipartite modularity (Barber 2007) and 
weighted bipartite modularity (Dormann and Strauss 2014) 
– and we address whether the pattern found is consistent 
across levels. We expect to detect modularity in i–sp net-
works if the pattern is already present in sp–sp networks, 
but we predict a stronger modularity in the former due to 
a high degree of individual specialization in the use of pol-
len resources (Tur et al. 2014) and the potential existence of 
individuals or groups with alternative foraging preferences 
within a species (Araújo et  al. 2008, Tinker et  al. 2012). 
To test this prediction, 100 null i–sp networks of same size 
and species composition as the empirical ones were con-
structed, but in which all conspecific individuals act as gen-
eralized as their species (i.e. there is no degree of individual 
specialization). The comparison of null and empirical i–sp 
networks allows identifying how much information is lost 

when intraspecific variation is not considered in interaction 
networks. Given that results may vary depending upon the 
modularity metric used, particularly in the identification of 
modules (Thébault 2013), we compare the different metrics. 
Second, we analyze how conspecific individuals are organized 
into modules. Conspecific individuals with similar interac-
tion patterns are likely to aggregate in the same module. 
Alternatively, conspecific individuals specialized on different 
pollen resources might belong to different modules and thus 
the degree of individual specialization would in turn affect 
the degree of heterogeneity in module membership within 
species, i.e. species with a higher degree of individual spe-
cialization might have conspecific individuals spread into a 
higher number of modules than species with a low degree 
of individual specialization. Third, we discuss the drivers of 
modularity in i–sp networks and the underlying mechanisms 
influencing the distribution of individuals across modules. 
As only a few pollination networks have been studied at the 
individual level (see Dupont et al. 2011, 2014 and Gómez 
and Perfectti 2012 for single species network approaches), 
the ecological factors causing modularity at this level are 
poorly known. Specifically, we focus upon pollen resource 
affinity among individuals and phenology as drivers of mod-
ule composition. Finally, we identify the topological roles 
of insect individuals and plant species in i–sp modules, and 
explore the influence of abundance, phenophase and linkage 
level upon topological role assignment. As far as we know, 
our study is the first to investigate the interplay between two 
organizational levels in modularity pattern of pollination 
networks and to assess whether modularity is driven by the 
same or different factors at the two levels.

Material and methods

Data sampling and network construction

We studied interactions between plants and insect flower- 
visitors at two locations from the highest mountain in  
Mallorca (Puig Major, 1445 m): 1) Sa Coma de n’Arbona 
(CN) at 1100 m a.s.l. (39°48′05′′N, 2°47′9′′E) and 2)  
Passadís de Ses Clotades (PC) at 1400 m a.s.l. (39°48′34′′N, 
2°47′50′′E). Fieldwork was conducted throughout the 
flowering season (May to August 2010). Observations of 
pollinators (i.e. insects visiting flowers and touching the 
reproductive parts of these) were carried out on randomly 
selected single plants or patches during 5-min surveys.  
We recorded identity and number of observed pollinator 
individuals. When possible, these pollinators were captured 
at the end of the survey and stored separately in clean vials 
for later taxonomical identification and pollen load analy-
sis. All plant species in bloom in the area were surveyed three 
times a week, on calm and sunny days, between 10 a.m. and 
5 p.m. Flower abundance (flowers m2) of each plant species 
was estimated every two weeks by counting the number of 
open flowers in fixed transects (nine in CN and three in PC).

A total of 190 individuals (71 Diptera, 83 Hymenoptera, 
33 Coleoptera, 3 Hemiptera) belonging to 73 distinct insect 
species were captured in CN and 137 individuals (43 Dip-
tera, 64 Hymenoptera, 26 Coleoptera, 4 Hemiptera) from 
61 species in PC. Number of individuals per species ranged 
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from 1 to 10 (mean  SD: 2.44  1.81). In the laboratory, 
the pollen load of each pollinator specimen was examined. 
Using a pollen reference collection from the study sites, we 
identified the pollen types and counted all pollen grains from 
the body surface of each insect following the methodological  
procedure in Tur et  al. (2014). In total, we recorded  
55 pollen types on insects from CN and 49 pollen types on 
insects from PC. On average (mean  SD), 17 982  80 
588.4 and 18 654  95 421.8 pollen grains per insect indi-
vidual were counted in CN and PC, respectively.

Data from the pollen load analysis (available from  
the Dryad Digital Repository: http://dx.doi.org/10.5061/
dryad.63fp5) were used to construct pollen-transport net-
works depicting the interactions between plant–pollen types 
and insect pollinators (see Tur et al. 2014 for details about 
data). We built both binary and weighted interaction matri-
ces for each study site at two scales of resolution: 1) sp–sp, 
i.e. insect species and plant-pollen types and 2) i–sp, i.e. 
insect individuals and plant-pollen types. In binary matri-
ces an interaction between an insect individual or species (in 
rows) and a flowering plant taxon (in columns) was present 
(i.e. corresponding cell filled with a 1), if pollen was detected 
on the body of the insect. In weighted matrices, interactions 
have an associated weight measured as the specific number 
of pollen grains from each pollen type identified on the body 
of insects.

Construction of null i–sp networks

Networks at different scales differ in size, because downscal-
ing from sp–sp to i–sp networks increases the total number 
of nodes as many of the pollinator species were represented 
by several individuals. Given that most network descriptors 
are affected by network size (Dormann et al. 2009), a null 
model is needed to carry out comparisons across scales (spe-
cies and individuals) accounting for network size-related dif-
ferences. Therefore, we built 100 null i–sp weighted networks 
for each study site with same size and species composition 
as the empirical i–sp networks. In these null networks each 
conspecific individual was reassigned the same pollen load 
as observed, but pollen grains were redistributed among all 
pollen types used by the corresponding species with a prob-
ability equal to the observed pollen type proportion used by 
the species (see more details in Tur et al 2014). Thus, in these 
null i–sp networks, individuals act as generalized as their spe-
cies (i.e. there is no degree of individual specialization) and 
so the null i–sp weighted networks constructed for each site 
serve both as a control for network size and for individual 
specialization. A binary version of the null i–sp networks was 
obtained by transforming the null weighted matrices into 
presence–absence matrices.

Modularity analysis

For each pollen-transport network (i.e. empirical sp–sp  
networks and i–sp networks at both study sites), the level  
of modularity, number of modules and composition of  
modules were calculated using three different metrics: 
1) unipartite modularity (Newman and Girvan 2004), 
2) bipartite modularity (Barber 2007), and 3) weighted  
bipartite modularity (Dormann and Strauss 2014). The  

difference among these metrics is that each one was designed 
for a particular type of network (i.e. binary unipartite, binary 
bipartite and weighted bipartite networks). Thus, for the first 
two measures, the binary interaction matrices were used for 
the analysis, whereas in the last one we used the weighted 
matrices. All three metrics measure the extent to which 
interactions are organized into subgroups of tightly linked 
nodes, so that modularity is high when within- module con-
nectance is high and between-module is low. Modules were 
identified using the simulated annealing method (Guimerà 
and Amaral 2005a, b), a strong and accurate modularity-
detection algorithm (Danon et  al. 2005) which randomly 
rearranges nodes and modules until a maximum modularity 
is achieved.

The first modularity measure calculated was unipartite 
modularity MU (Newman and Girvan 2004, Guimerà and 
Amaral 2005a, Olesen et al. 2007) defined as
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where NM is the number of modules in the network, I is 
the total number of network links, lm is the number of links 
between nodes in module m (within-module links) and dm 
the sum of the number of links of all nodes belonging to 
module m. MU ranges from 0 to (1 – 1 / NM). MU , num-
ber of modules and composition of each one were calculated 
with the program NetCarto (Guimerà and Amaral 2005a, b) 
with the following input parameters: iteration factor  0.95, 
cooling factor  0.99 and final temperature  0.

The second modularity metric calculated was bipartite 
modularity MB defined by Barber (2007) as follows
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where NM is the number of modules in the network, I is 
the total number of network links, lm is the number of 
links between nodes in module m (within-module links) 
and d Am and d Bm are the sum of the number of links of the 
nodes within module m which belong to A-set and B-set 
respectively. Therefore, MB is an extension of Newman and  
Girvan’s measure (MU) but taking into account bipartiteness 
of the network, i.e. network nodes of set A can only interact 
with nodes of set B. MB, number of modules and composi-
tion of each one were calculated with the program BIPMOD 
(Thébault 2013).

The last modularity metric calculated was weighted  
bipartite modularity MWB as proposed by Dormann and 
Strauss (2014)
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where NM is the number of modules in the network, W is 
the total sum of link weights in the network (W  wij
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spp. in CN and seven spp. in PC). For these species we quan-
titatively measured the dispersion of conspecific individuals 
between different modules, i.e. species module membership 
heterogeneity, with an index of qualitative variation IQV 
(Wilcox 1973) calculated as follows

IQV
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where NM is the number of modules and pm the proportion 
of individuals of species i in a module m. IQV was obtained  
for each of the selected species (species for which we  
sampled  5 individuals) and ranged from 0, when all  
conspecific individuals are distributed inside the same  
module, to 1 when conspecific individuals are evenly distrib-
uted among all modules. We calculated IQV using module 
membership assigned by each different metric in one of the 
runs of the algorithm to see whether results were consistent 
regardless of the modularity metric considered. In null i–sp 
networks species IQV is 0, as all conspecific individuals have 
exactly the same interactions and thus belong to the same 
module. However, in empirical i–sp networks we expected 
species with a high degree of individual specialization in the 
use of pollen resources (Tur et al. 2014) to be more heteroge-
neous in module membership than species with a low degree  
of individual specialization. Thus, using simple linear regres-
sion analysis, we tested if species module membership  
heterogeneity in empirical i–sp networks (IQV) was related 
to their degree of individual specialization in pollen resources 
measured as explained in Supplementary material Appendix 
A2. To identify whether IQV values calculated were asso-
ciated to potential sampling biases, such as differences in  
the number of individuals captured per species or differ-
ences in species phenophase length, we performed Spearman  
correlations among IQV and these two variables.

Relationships between biological factors and 
modularity

We explored if pollen resource niche partitioning among 
individuals was associated to the modularity pattern, i.e. 
whether individuals within the same module were more 
similar in their pollen niches than individuals in differ-
ent modules. For this, we used a multi-response permuta-
tion procedure MRPP (Mielke and Berry 2001) to test 
whether within-module pollen niche dissimilarity was less 
than expected by random. Pollen niche dissimilarity was 
calculated with pairwise Bray–Curtis distance from pres-
ence/absence i–sp matrices. The overall weighted mean of 
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the number of modules, ni the number of individuals within 
module m, N the total number of individuals in the net-
work and dm  the average dissimilarity among individuals 
within module m) was compared against d-values obtained 
for 1000 permutations, which shuffled randomly individuals 
across modules to assess the significance level. The statistic 
A, which is a measure of within-module homogeneity com-
pared to random expectation (A  1 – observed d / expected 
d), provided an estimate of effect size. A ranges from 1  
(when within-module homogeneity deviation from random 

and w Am and w Bm are the sum of the link weights of the nodes 
within module m which belong to A-set (row sums within 
module m) and B-set respectively (column sums within 
module m). MWB, number of modules and composition of 
each one were calculated using function computeModules 
within the bipartite R-package (Dormann et al. 2008). For 
the calculation of this measure we previously log-transformed 
all link weights with log10 (number of pollen grains  1) in 
order to avoid having very large numbers in the matrices.

For all the modularity metrics considered, significance 
was assessed by comparing observed values against modular-
ity values of 100 random matrices of same size and linkage 
level rank distribution (null models with fixed column and 
row totals). We calculated Z-scores as the difference between 
the observed modularity and the mean modularity of ran-
domizations divided by their standard deviation. Networks 
with a Z-score  2 were considered as significantly modular.

We evaluated the differences among the three modularity 
metrics and the concordance of the modules identified by 
each metric (i.e. which individual belongs to each module) in 
i–sp networks at both study sites. As the simulated annealing 
algorithm is a stochastic optimization technique, even differ-
ent runs of the algorithm can yield different classifications of 
nodes into modules (Guimerà and Amaral 2005a). Thus, 10 
runs for each empirical i–sp network and modularity metric 
were performed. Concordance of modules identified, both 
within runs of the same metric and among runs of different 
metrics, was estimated with the mutual information index 
(Guimerà et  al. 2007, Thébault 2013), which ranges from 
1 (when partitions are identical) to 0 (when partitions are 
uncorrelated) (Supplementary material Appendix A1).

To determine whether differences in modularity among 
networks at both scales (species and individuals) were a 
result of individual specialization rather than an artifact of 
network size, we also calculated the above mentioned modu-
larity metrics for the 100 null i–sp networks constructed. 
Modularity in empirical i–sp networks was considered as  
significantly higher when it ranged above 95% of modularity 
values obtained for these null i–sp networks.

Finally, for each pollen-transport network and for all  
significant modules detected inside these networks we  
determined: number of insect pollinator nodes (A), num-
ber of pollen type nodes (P), total number of nodes (A  
P), total number of interactions (I), linkage level of each 
node (L), connectance (C) and nestedness (NODF). Con-
nectance is the proportion of realized links from all possible 
links. NODF is a measure of nestedness (Almeida-Neto 
et al. 2008), which ranges from 0 for non-nested matrices 
to 100 for perfectly nested matrices. To test whether NODF 
was significant, values were compared with those obtained 
from 1000 random networks with fixed row and column 
totals. All these network metrics were calculated with the 
bipartite (Dormann et al. 2008) and vegan (Oksanen et al. 
2012) packages implemented in R ver. 2.15.0 (www. 
R-project.org/).

Distribution of individuals among modules

In order to explore how conspecific individuals were distrib-
uted across modules in null and empirical i–sp networks, we 
selected species for which we sampled  5 individuals (14 
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included, so that separate odds ratios were determined for all 
predictors for each role except one, which is set as a reference 
level and omitted from the analysis (P was selected as the 
base role in our model). On the other hand, for insect indi-
vidual nodes we performed a binary logistic model where the 
response variable was ‘role’ coded as a factor with two levels 
(P and C) and the predictors included were: 1) linkage level 
of individuals, 2) individual phenophase (coded here as a 
factor with two categories: ‘early season’, including individu-
als from May–June, and ‘late season’ including individuals 
from July–August), and 3) the interaction between those two 
variables. For a straightforward interpretation of the models, 
marginal effects for each predictor and effects displays were 
calculated by fixing the other predictors at mean values. Anal-
yses included in this section were performed with R packages 
mlogit (Croissant 2012), nnet (Venables and Ripley 2002) 
and effects (Fox and Hong 2009). R script written to perform 
all analyses included in this paper is deposited on figshare: 
http://dx.doi.org/10.6084/m9.figshare.1190856.

The downscaling approach: sampling considerations

Downscaling a whole pollination network from the species 
to the individual level is a challenging methodological task. 
Mark–reobservation of individuals (Dupont et  al. 2011)  
or micro-radio telemetry tracking (Hagen et  al. 2011) are 
two techniques successfully used earlier in studies of indi-
vidual spatio-temporal foraging patterns in bumblebees. 
Despite such methods might work for sampling interactions 
of individuals in some pollinator species, both seem rather 
unfeasible for a multi-species sampling with limited human 
and budget resources. Instead, here pollen load analysis was 
used to estimate visitation patterns of insect individuals. 
However, several methodological issues must be considered 
when using this kind of data, and below we point out some 
of them for our particular dataset (see Tur et  al. 2014 for 
more details). First, pollen identification to species level is 
sometimes uncertain for closely related species, so in these 
cases (four in total) we had to lump pollen from several spe-
cies into one type. Second, number of individuals captured 
per species was low, i.e. for only 15% of all pollinator species 
did we sample  5 individuals, because it was not possible to 
capture all species whenever they were seen in the field and 
besides some species were rarely observed. Despite this, we 
calculated with rarefaction curves (following Chacoff et al. 
2012) that the number of individuals captured allowed an 
average detection of 69% of the expected interactions per 
species. Interaction rarefaction curves can be saturated with 
fewer samples because most specimens carry pollen from 
more than one species (Bosch et al. 2009). Moreover, indi-
viduals collected from the same species were sampled over 
their entire activity period (Fig. 2), although we do not have 
information about the exact lifespan of each individual. 
Finally, pollen loads are assumed to be a reasonable proxy for 
the individual’s interaction pattern over time. Rather than a 
single snapshot, pollen load analysis provides a longitudinal 
record of the flower visitation history of individuals (Bosch 
et  al. 2009), because pollen grains can remain attached to 
the body of pollinators for long periods. Pollen from flowers 
visited days or weeks before insect capture might be present 
in low numbers, in spite of the grooming behaviour of the 

is maximum) to 0 (when it is random). MRPP was per-
formed with R package vegan (Oksanen et al. 2012).

To evaluate the role of phenology as a driver of modu-
larity, we first classified all network nodes into phenological 
categories: (1) May, (2) June, (3) July and (4) August. For 
plant pollen types, we used the date of the flowering peak, 
i.e. date of maximum flower abundance in the field, or date 
of maximum abundance of pollen grains on insects when 
field data were not available. For insect individuals, we used 
the date of field capture. We analyzed the phenological com-
position of each module in i–sp networks. To test whether 
modules were significantly associated to the phenology of 
nodes we performed randomization tests of independence. 
We generated 999 permutations of the empirical contin-
gency tables using fixed column and row marginal sums (i.e.  
representing no association between variables) and then  
calculated c2-statistic for each one. We counted the number 
of times (x) the c2-statistic for null permutations was greater 
or equal to empirical c2- and a p-value was calculated as  
x/number of permutations  1.

Relationships between node features and  
topological roles

In empirical i–sp networks, based on the network partition 
into modules provided by the MU metric, a topological role 
to each node was assigned depending on its connectivity. 
This topological role is described by two parameters: within-
module degree (z, i.e. standardized number of links to other 
nodes in the module) and among-module connectivity (c, 
i.e. the level to which a node is linked to other modules) 
(Guimerà and Amaral 2005a, b). According to c and z, 
nodes (both plants and individuals) were classified into four 
roles (Olesen et al. 2007): 1) peripherals, which are special-
ists (z  2.5 and c  0.62); 2) connectors, which are nodes 
with low z and high c acting as glue among different modules 
(z  2.5 and c  0.62); 3) module hubs, which are highly 
connected nodes but mainly linked within their own mod-
ule (z  2.5 and c  0.62); and 4) network hubs, which are 
super–generalists (z  2.5 and c  0.62).

Moreover, all nodes in empirical i–sp networks were also 
characterized by a list of biological features (linkage level, 
pollen abundance, flowering period length, and flowering 
peak for plant pollen types; individual linkage level, spe-
cies abundance, species phenophase length, individual phe-
nophase, and sex for insects) (see details in Supplementary 
material Appendix A3). To assess the effect of these biologi-
cal features determining the role of a node in i–sp networks, 
we performed a multinomial logistic model for plants and 
a binary logistic model for insect individuals. In the multi-
nomial logit model for the plants the response variable was 
‘role’ coded as a factor with three levels (P  peripherals, 
MH  module hubs, and NH  network hubs). Connectors 
were excluded from this model as too few plant nodes had 
this role. The predictors included were: 1) flowering period 
length, and 2) pollen abundance (with logarithm base 10 
transformation). Neither linkage level nor flowering peak 
were included as predictors to avoid strong collinearity in 
the former and because no differences were detected among 
roles in the latter. The model estimated the probability ratio 
of being assigned into a certain role based on the predictors 
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insects. We detected pollen grains on insects even up to a 
month after the end of the flowering of a particular plant 
species. However it is very difficult to precise the foraging 
period which is represented in these insect pollen loads, as 
we lack information about the exact lifespan of each indi-
vidual of the different species.

Results

Comparing network modularity at the species and 
individual levels with different metrics

Network parameters calculated for networks at species and 
individual level are summarized in Table 1. Downscaling 
from sp–sp to i–sp networks increased total number of 
nodes, and also number of interactions (Table 1). However, 
as expected, empirical i–sp networks had less interactions 
and hence lower connectance values than null i–sp networks 
of the same size, because conspecific individuals are more 
specialized than their corresponding species. Moreover,  
sp–sp networks were significantly nested (Table 1) and 
remained nested when downscaling to the individual level, 
although NODF values for empirical i–sp networks were 
lower than for null i–sp networks.

The degree to which networks at the species level were 
modular varied depending on the modularity metric con-
sidered (Table 2). The MU metric did not detect modules in 
the sp–sp networks from both sites but the other two metrics 
did (Table 2). By contrast, downscaling from species to indi-
viduals turned the networks more modular consistently with 
the three metrics. Modularity values of different metrics were 
quite similar, although the number and identity of modules 
identified in i–sp networks varied depending on the met-
ric used (Table 2, Supplementary material Table A1). The 
metric showing the highest variation (% coefficient varia-
tion) among different runs of the algorithm for same net-
work was MWB, being more variable both in the modularity 
value returned (MU  0.17%, MB  0.25%, MWB  4.71%) 
and the number of modules identified (MU  2.67%, 
MB  6.29%, MWB  15.82%). Congruence of the identi-
ties of modules identified within different runs of the metrics 
was high (mutual information  0.8) in the case of MU and 
MB, but not for MWB which showed a concordance between 
runs comparable to the concordance existent among MU and 
MB (Supplementary material Table A1).

In both study sites, modularity values of empirical i–sp 
networks were above the range of values obtained for null 

Table 1. Parameters describing the structure of the empirical networks at the different scales studied (sp–sp  species – species and i–sp   
individuals – species) and the null i–sp networks constructed for comparison. Mean  SD values (n  100) of the null networks are shown.

sp–sp
Empirical

i–sp networks
Null

i–sp networks
Empirical

CN PC CN PC CN PC

Insect pollinator nodes (A) 73 61 190 137 190 137
Pollen type nodes (P) 55 49 55 49 55 49
Total nodes (A  P) 128 110 245 186 245 186
Total interactions (I) 434 360 1342.79  6.0 882.74  5.88 681 506
Connectance (C) 0.11 0.12 0.13  0.001 0.13  0.001 0.07 0.08
Nestedness (NODF) 34.45* 38.65* 44.22  0.46* 43.78  0.42* 26.99* 29.67*

*p  0.001. Significance value of NODF tested using the fixed row and column totals null model.

Table 2. Modularity values obtained for empirical networks at  
different scales (species-species and individuals-species) and num-
ber of modules identified using different metrics. Significance of 
modularity is shown with z-scores ( 2 is significant), calculated as 
the difference between observed modularity and mean modularity 
of 100 randomizations (fixed-fixed column and row sums null 
model) divided by their standard deviation.

sp–sp networks i–sp networks

CN PC CN PC

Unipartite modularity
MU 0.31 0.31 0.37 0.38
Number of modules 5 5 6 5
Z-score 0.73 0.89 3.51 5.25

Bipartite modularity
MB 0.32 0.32 0.38 0.39
Number of modules 6 6 9 7
Z-score 7.39 3.69 7.95 8.34

Weighted bipartite modularity
MWB 0.32 0.33 0.33 0.39
Number of modules 6 6 13 8
Z-score 92.88 86.35 76.63 104.38

i–sp networks of the same size due to the specialization of 
individuals. This result was consistent regardless of the mod-
ularity metric used (Fig. 1).

Composition of modules in i–sp networks: 
distribution of individuals among modules

Hereafter, and unless otherwise is indicated, we only provide  
the results obtained with MU because this modularity  
metric has been that mostly used in pollination network  
studies (Bosch et  al. 2009, Dupont and Olesen 2009). 
Although the metric was originally designed for unipartite 
networks and makes no distinction between types of nodes, 
it performs well for bipartite networks and the modularity 
values obtained are similar to those obtained using the mod-
ularity metric designed for bipartite ones (Thébault 2013).

In the study site CN, the empirical i–sp network had six 
modules, with sizes ranging from 24 to 64 nodes, and two 
nodes disconnected from the main network (Supplemen-
tary material Fig. A1a). However, all modules were strongly  
connected, as shown by the relatively high numbers of 
between-module links compared to within-module links 
(Table 3). At PC, the i–sp network had five modules: two 
large modules (49–65 nodes) with a high number of within-
module links, two medium–sized modules (ca 30 nodes) 
with more between-module links than within-module 
links and finally, a small module of only two plants and 
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Figure 1. Modularity values of empirical i–sp networks obtained with three different metrics (MU  unipartite modularity, MB  bipartite 
modularity and MWB  weighted bipartite modularity) compared to null i–sp networks without individual specialization (i.e. conspecific 
individuals act as generalized as their corresponding species). Box plots show the range of values obtained in 100 null i–sp networks whereas 
asterisks show the empirical modularity ((a): CN site and (b): PC site). Modularity in the empirical networks can be considered as signifi-
cant when the asterisk falls outside the boxplot.

Table 3. Composition and topological properties of modules detected in empirical i–sp networks at both study sites using the unipartite 
modularity metric.

CN i–sp network PC i–sp network

Mod1 Mod2 Mod3 Mod4 Mod5 Mod6 Mod1 Mod2 Mod3 Mod4 Mod5

Total nodes 64 38 29 24 33 55 32 49 6 34 65
Plant pollen types 18 10 7 4 5 10 10 22 2 9 6
Insect individuals 46 28 22 20 28 45 22 27 4 25 59

No. insect species 26 20 17 14 17 25 16 18 4 21 34
Within-module links 121 41 41 38 44 102 47 83 5 50 147
Between-module links 115 32 91 97 86 165 83 69 13 78 105
Nestedness (NODF) 46.98* 18.72ns 55.54* 42.86ns 56.13* 51.65* 39.28* 38.35* 50.00ns 46.57* 55.81*
Connectance (C) 0.15 0.15 0.27 0.48 0.31 0.23 0.21 0.14 0.62 0.22 0.42
Topological roles of nodes

Network hub 1 0 1 2 1 2 1 1 0 1 0
Module hub 2 1 1 0 1 0 0 1 0 0 3
Connector 10 3 13 16 16 9 8 1 3 7 1
Peripheral 51 34 14 6 15 44 23 46 3 26 61

Phenological composition
(1) May 17 31 0 0 0 0 1 4 0 0 0
(2) June 28 3 3 0 0 3 3 44 0 26 6
(3) July 19 2 21 19 7 45 26 1 4 8 42
(4) August 0 2 5 5 26 7 2 0 2 0 17

*p  0.001, ns  non-significant

four insect individuals (Supplementary material Fig. A1b,  
Table 3). A nested pattern was found inside most modules 
(Table 3, Supplementary material Fig. A1). In more than 
half of the modules, insect individuals were structured 
around 1–3 plant pollen types, which acted as module hubs.  
Proportion of module and network hubs (always plant pol-
len types) was small in both networks (ca 2% of nodes). 
Most nodes ( 75%) acted as peripherals and the remaining as 
connectors (Supplementary material Fig. A2). The proportion 

of connectors in CN site was high (28%) compared to PC 
(11%), and they were mainly hoverflies and small bees.

Interestingly, when downscaling networks to the level of 
individuals, individuals of the same species did not belong 
to the same module. Instead, species module member-
ship changed throughout the flowering season (Fig. 2) and  
conspecific individuals were heterogeneously distributed 
among modules. In empirical i–sp networks, only two spe-
cies, out of the 21 studied with  5 individuals captured, 
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Figure 2. Grey bars represent active species phenophase duration estimated by field observations ((a): CN site, (b): PC site) and coloured 
squares indicate the time (sampling week) at which individuals were captured. Each square represents a single individual and the different 
colours show the module to which individuals belong. Squares representing captures of individuals within the same sampling week were 
coloured in the same order as individuals were captured. In most species conspecific individuals belong to different modules depending on 
the time of the season. Thus, species switch between modules, a behaviour that disappears at the sp–sp network level.

had all conspecifics grouped together within the same 
module (Sphaerophoria sp. in module 1 and Exoprosopa 
bowdenii in module 4 in the CN i–sp network). On aver-
age, a species belonged to 2.7 modules and the range was 
1–5. Heterogeneity in module membership of conspecifics 
was 0.55  0.27 at CN (mean IQV  SD; n  14 species) 
and 0.63  0.18 at PC (n  7 species). A similar result was 
also obtained when MB and MWB metrics were used (MB: 
IQVCN site  0.59  0.14; IQVPC site  0.71  0.16; MWB: 
IQVCN site  0.49  0.22; IQVPC site  0.61  0.19). In null 
i–sp networks, as expected, individuals of the same species 
were always grouped inside the same modules, thus sug-
gesting that individual specialization is a driver of module 
dispersion of conspecific individuals. However, the degree 
of heterogeneity in module membership among conspecifics 
was not proportionally related to the degree of individual 
specialization WIC/TNW (R  –0.05, p  0.75). Species 
with longer phenophases or those for which more individu-
als were sampled were not more dispersed among modules 
than species with shorter phenophases or with relatively 
few samples (Spearman’s rho  0.411, p  0.06; Spearman’s 
rho  0.005, p  0.97, respectively), rejecting possible 
influence from these variables.

Biological factors and modularity

Results from the MRPP analysis showed that within- 
module pollen niche dissimilarity was significantly less than 
expected by random in both i–sp networks, although the 
deviation was small (CN: d  0.59, A  0.24, p  0.001; 
PC: d  0.64, A  0.17, p  0.001). Thus, affinity in pol-
len resources was higher between individuals from the same 
module (CN: dW   0.60; PC: dW   0.62) than between 
individuals from different modules (CN: dB   0.82; PC: 
dB   0.84) (Supplementary material Fig. A3).

In addition, modularity in i–sp networks was also consis-
tently associated to phenology (CN: Empirical c2  277.88, 
mean permutations c2  15.18, DF  15, p  0.001; PC: 
Empirical c2  136.82, mean permutations c2  12.23, 
DF  12, p  0.001). In most modules of the CN i–sp 
network we found a predominance of nodes from a certain 
month of the season (Fig. 3a): 1) module 2 was mainly com-
posed of plants flowering in May and insect individuals from 
the beginning of the season, 2) module 1 contained 76% of 
all network plants and pollinator individuals from June, 3) 
plants and pollinators from July were found in several mod-
ules, but 39% of insect individuals and 47% of flowering 
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Figure 3. Representation of the two i–sp network graphs showing the change in phenological composition across modules in the two study 
communities: (a) CN, and (b) PC. Size of each pie chart is proportional to the number of nodes within each module and links connecting 
them are weighted by the number of between-module interactions. For insects, phenology (May, June, July, August) corresponds to the date 
the individual was captured whereas for plant pollen types it corresponds to the peak flowering date. A strong seasonality can be observed 
in each module.

plants from this month belonged to module 6, and 4) mod-
ule 5 was made up of 57% of all plants and insect individuals 
from August. This seasonality in module composition was 
also detected in the PC i–sp network (Fig. 3b): 1) modules  
2 and 4 included all plants with a flowering peak in June and 
83% of pollinator individuals from this month, 2) module 
1 contained mainly plants and insect individuals from July, 
and 3) module 5 was the largest module with 52% of total 
network nodes from July and 81% from August.

Association of node features with topological roles

Plant’s and insect individual’s topological roles in the network 
were determined by their biological features. Results from  
the multinomial and binary logistic models are reported in 
Supplementary material Table A2. For plant pollen types, 
longer flowering periods and higher pollen abundances 
significantly increased the probabilities of being a network 
or module hub (Supplementary material Fig. A4a–b). The 
model estimated a very high probability for plants with 
low pollen abundances to be peripherals in the interaction 
network, whereas plants with high pollen abundance had 
a higher likelihood of becoming module hubs. Moreover, 
only plants with very long flowering periods (14 weeks) were 
likely to become network hubs. For insect individuals, as 
expected, increases in linkage level increased the likelihood 
of being a connector. For instance, for a node with Li  2 the 
model predicted a probability of being a connector to 0.08%, 
whereas for a node with Li  10 it was 90%. This positive 
effect of linkage level was higher for individuals present at 
the end of the season, as shown by the significant positive 
interaction between individual linkage level and pheno-
phase in the model (Supplementary material Table A2). The  
average probability of being a connector in May–June (early 
season) was 26% whereas in July–August (late season) it was 
65% (Supplementary material Fig. A4c).

Discussion

Downscaling pollination networks to the individual level 
revealed a modularity pattern which can be hidden at the 
species level. Such modularity was associated to: 1) the 
heterogeneity and specialization in the partition of pollen 
resources among individuals, and 2) a dynamic switching 
of interactions within pollinator species during the season 
tracking plant flowering phenologies.

Results showed that when conspecific individuals are 
aggregated into species in the process of constructing spe-
cies-based pollination networks, a misleading or incomplete  
picture of overall network patterns can be obtained because 
the existing inter-individual variation in flower foraging 
behaviours is not considered. For instance, in our study, 
empirical i–sp networks were less connected and nested 
than expected from the null models because generalized 
pollinator species were, in fact, composed of specialized 
and idiosyncratic conspecific individuals (Tur et al. 2014). 
Particularly, and in contrast to the results of Dupont and 
Olesen (2012) showing that a modular pattern was stable to 
changes in temporal scale, we found that modularity was not 
consistent across the two hierarchical scales of organization 
(i.e. species and individuals), regardless of the metric used to 
measure it. When downscaling, i–sp networks turned more 
modular than expected with our null model. The explana-
tion for this is the strong specialization and heterogeneity 
in resource partitioning within species in empirical net-
works (Tur et al. 2014), as modularity tends to increase with 
higher specialization of interactions (Prado and Lewinsohn 
2004, Lewinsohn et  al. 2006). Therefore, our results sug-
gest that individual specialization plays an important role 
in the magnitude of emergent modularity in i–sp networks.  
Further studies are needed to assess how consistent a  
modular pattern in pollination networks at the scale of indi-
viduals is. Exploring community structure at this level offers 
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study, phenological compartmentalization was evident only 
when downscaling networks from species to individuals. At 
the individual level, a temporal dynamics hidden at species 
level appeared, revealing the existence of module turnover 
in the network. Modules changed through time during 
the flowering season, so as the season advanced new mod-
ules are formed and old ones dissolve. In fact, as the season 
progressed, pollinator species switched from one module 
to the next, a behaviour detectable only at the individual 
scale. Changes in species module membership through time 
might be a consequence of adjustment of foraging choices 
in response to changes in flower abundances, availability of  
resources and/or density of foragers throughout time  
(Goulson 1999). Therefore, a continuous interaction  
rewiring process is occurring at the species level which is 
driven by the dynamics of the adaptive foraging behaviour of 
individuals to resource fluctuations. These species switches 
in resource choice can enhance the stability of networks and 
community persistence (Kondoh 2003, Kaiser-Bunbury 
et al. 2010, Valdovinos et al. 2013).

Relatively few studies until now have attempted to  
correlate species traits with species roles (Donatti et al. 2011, 
Schleuning et al. 2014, Dupont et al. 2014). However, such 
knowledge might be relevant for the conservation of species 
interaction networks (Tylianakis et  al. 2010). In our i–sp 
modular networks, phenology was an important determi-
nant of network structure, and thus flowering period length 
of plant pollen types and phenophase of individual insect 
species turned out to be important attributes determining a 
node’s topological role. Similar to other pollination networks 
(Dupont and Olesen 2009, 2012), the modules of individu-
als assembled around 1–3 plant pollen types, which were 
the module or network hubs. These plant hubs were species 
with long flowering periods (7–10 weeks) and also with high 
abundances in the study area, such as Hypericum baleari-
cum, Santolina chamaecyparissus, Teucrium spp., Bellium 
bellidioides, Micromeria filiformis, Euphorbia characias and 
several Asteraceae species. As modules detected in networks 
were related to a temporal dynamics, these network hubs 
become key species not only because of their importance to 
the cohesiveness of the entire network at a given point in 
time, but also because of their role acting as temporal cou-
plers (Rasmussen et al. 2013). In contrast, no insect species 
acted as hubs, which seems to be an almost general trend in 
pollination networks (Dupont and Olesen 2009), also when 
sampling is not plant-centered like here. In particular, we 
note that even within a single pollinator species, individuals 
played different roles, thus not all individuals of a popula-
tion are equivalent from a network structural point of view.  
This implies that the potential impacts of a disturbance might 
be different depending on whether affected individuals are 
connectors or peripherals. The loss of connector individuals, 
for example, might cause the isolation of modules (Olesen 
et al. 2007, Guimerà et al. 2010). Thus, our findings high-
light the importance of considering intraspecific variation 
in foraging behaviours also for topological roles, although  
further studies are needed to determine which individual 
traits, in particular, define whether an individual acts as  
connector, peripheral or hub (Dupont et al. 2014).

The downscaling approach improve our understanding  
of the structure and dynamics of species-based networks, 

the opportunity to link network topology to the mechanisms 
underlying variation among conspecific individuals, such as 
differences in phenotypical traits, foraging preferences, sex, 
physiological condition or social status (Araújo et al. 2011, 
Dall et  al. 2012), and thus ultimately differential natural 
selection regimes and evolution.

Resource partitioning and niche organization have 
been suggested as drivers of network modularity in previ-
ous studies at the species level (Prado and Lewinsohn 2004, 
Guimerà et al. 2010). Indeed, resource partitioning proved 
to be a driver of floral diversification in models (Rodríguez- 
Gironés and Santamaría 2010). However, resource parti-
tioning operates at the individual scale, as foragers compare 
the available resources and make the choice providing the  
maximum energy intake (MacArthur and Pianka 1966). 
Studies focusing on diet variation within a single species 
found a modular network structure reflecting differences in 
how individuals rank preferred resources (Araújo et al. 2008, 
Tinker et al. 2012). Variation in how flower-visitor individ-
uals forage through space can also determine the modular  
pattern of a network (Dupont et al. 2014). Here, modules 
in i–sp networks matched groups of individuals, which 
shared a common pool of pollen resources regardless of their 
species identities, i.e. individuals of the same species were 
not necessarily grouped into the same module. This means 
that, contrary to the traditional view in static species-based 
pollination networks, a species does not belong unambigu-
ously to a single module, but, one may say, more or less to a 
module. For instance, a hoverfly individual of Eristalis tenax 
had a higher pollen resource affinity with a bee individual of 
Osmia latrellei than with another conspecific hoverfly indi-
vidual. The identified modules were composed of function-
ally different pollinators (e.g. small bees, large bees, beeflies, 
hoverflies, flies) with overlapping pollen niches, so the view 
of modules as a set of species with convergent morphologi-
cal traits (Olesen et al. 2007, Danieli-Silva et al. 2012) or  
taxonomical relatedness (Rezende et  al. 2009) might not 
necessarily be the main rule at the individual level.

Conspecific individuals were distributed into differ-
ent modules due to the heterogeneity in the use of pollen 
resources within species (Tur et al. 2014). By belonging to 
several modules a species might reduce intraspecific compe-
tition, as competition between modules can be lower than 
within modules (Rezende et al. 2009), although we did not 
test this hypothesis here. However, the degree of heteroge-
neity in module membership for each species was not pro-
portionally related to a quantitative measure of the degree 
of individual specialization. This suggests that other factors 
might be important for the assignment of individuals to a 
particular module, such as species sociability traits, voltinism 
or other life history traits. Incorporating this kind of infor-
mation in future studies as well as data on intraspecific trait 
variation will provide a better understanding on how inter-
actions are distributed among individuals.

Phenology was one of the main drivers of modularity 
in the i–sp networks, implying that time means more than 
taxonomy. In most modules we detected predominance of 
plant pollen types and insect individuals present at a particu-
lar month of the season. Modularity in pollination networks 
has been associated to phenology in previous studies (Bosch 
et al. 2009, Martín González et al. 2012). However, in our 
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as it assists in unravelling ecological processes which actu-
ally take place at the scale of individuals but act as poten-
tial network pattern drivers. This is, for instance, the case 
of individual foraging behaviour, which is known to be  
an important driver of network structure in food-webs 
(Beckerman et al. 2006, Petchey et al. 2008) as it ultimately 
determines which interactions are realized and which are not. 
In addition, the module turnover identified at the individual 
scale highlights the importance of studying networks from 
a temporal viewpoint, not only across years or seasons, but 
also in series of smaller temporal windows (Rasmussen et al. 
2013) or at different organizational scales. Finally, network 
downscaling may facilitate bridging ecology and evolution 
through its focus upon determinants of individual fitness.
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