Detalles de la publicación.

Artículo

Año:2016
Autor(es):J.H.E. Cartwright, N. Piro, O. Piro, I. Tuval
Título:Geometric phases in discrete dynamical systems
Revista:Physics Letters, Section A: General, Atomic and Solid State Physics
ISSN:0375-9601
JCR Impact Factor:1.63
Volumen:380
Número:42
Páginas:3485-3489
D.O.I.:10.1016/j.physleta.2016.08.050
Web:http://www.sciencedirect.com/science/article/pii/S0375960116306594
Resumen:In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

Personal relacionado

  • Idan Tuval Gefen
  • Departamentos relacionados

  • Ecología y Recursos Marinos
  • Proyectos relacionados

  • DAVID II
  • Grupos de investigación relacionados

  • Dinámica de Ecosistemas Marinos
  • Archivos relacionados

  • PLA380.pdf