IMEDEA Calendar |
When | What | Where |
---|---|---|
Dv 7th juny 12:00 pm 12:30 pm | AbstractThe Southwestern Atlantic Ocean (SWA), is considered one of the most productive areas of the world, with a high abundance of ecologically and economically important fish species. Yet, the biological responses of this complex region to climate variability are still uncertain. Using 24 years of satellite-derived Chl-a data, the SWA was classified into 9 spatially coherent regions based on the temporal variability of Chl-a concentration, as revealed by SOM (Self-Organizing Maps) analysis. These biogeographical regions were the basis of a regional trend analysis in phytoplankton biomass, phenological indices, and environmental forcing variations. A general positive trend in phytoplankton concentration was observed, especially in the highly productive areas of the northern shelf-break, where phytoplankton biomass has increased at a rate of up to 0.42 ± 0.04 mg m −3 per decade. Significant positive trends in sea surface temperature were observed in 4 of the 9 regions (0.08–0.26 °C decade −1) and shoaling of the mixing layer depth in 5 of the 9 regions (−1.50 to −3.36 m decade −1). In addition to the generally positive trend in Chl-a, the most conspicuous change in the phytoplankton temporal patterns in the SWA is a delay in the autumn bloom (between 15 ± 3 and 24 ± 6 days decade −1, depending on the region). The observed variations in phytoplankton phenology could be attributed to climate-induced ocean warming and extended stratification period. The provided results further evidence of the impact of climate change on these highly productive waters. Sala de Seminarios del IMEDEA, Esporles | |
Dl 10th juny 10:00 am 11:30 am | Seminar “Understanding the network structure of ecosystems to guide conservation action” Sala Seminarios | |
Dv 14th juny 12:00 pm 12:30 pm | AbstractCyberTracker is a non-profit organization which develops free field data collection software. While Cybertracker software is free of charge, easy to use by a broad range of users due to its simplicity and provides multiple advantages for field data collection in comparison to a manual approach, it is still widely unknown and rarely used. During this talk, I will introduce the software, explain its advantages and applications, the types of hardware available, provide some personal examples of the application during my research and introduce its functioning. Hopefully, the talk will serve for the attendees to understand its potential and consider using this powerful tool that has made my field data collection much easier and efficient and has also improved the quality of the data recorded. Sala de Seminarios del IMEDEA, Esporles | |
Dv 21st juny 12:00 pm 12:30 pm | AbstractPosidonia oceanica meadows have suffered a global regression in the Mediterranean Sea during the last decades. In order to counter this decline, some restoration projects have relied on the use of seedlings as a strategy to accelerate the natural recovery of their meadows and increase genetic diversity. Furthermore, understanding the dynamics and interactions that affect each species and between different organisms are key to enhance restoration success. On this project, we set an experiment in Pollensa Bay (Mallorca, Spain) to study whether P. oceanica seedlings, which had been previously cultured in controlled conditions for three months, improve their survivorship rates at different planting densities (1, 4, 8, 12 and 16 seedlings/0.04 m2). We planted the seedlings in two locations of Pollensa Bay, which presented different substrates: dead matte with marine phanerogams, sand with marine phanerogams and bare sand. Six months after plantation, no density-dependent effect was observed in any of the clumps anywhere. However, an interspecific facilitation effect was noticed for the seedlings planted in sand with other marine phanerogams, as they displayed a 39.27% ± 34.56 average survivorship rate, compared to 0% survivorship on this same substrate without any other seagrass around. Moreover, dead matte remained as the best substrate for restoration purposes, with an average survivorship rate of 57.07% ± 29.92. Our results reinforce the relevance of understanding the ecological interactions between seagrass species in order to increase restoration success, as well as the main factors affecting the survivorship of P. oceanica seedlings in the early stages after establishment in the substrate. Sala de Seminarios del IMEDEA, Esporles | |
Dv 28th juny 12:00 pm 12:30 pm | AbstractSaccharomyces cerevisiae is one of the best studied eukaryotic model organisms. It can alternate between haploid and diploid phases, with lack of nutrients favoring a switch to the haploid phase through a mechanism called sporulation. During sporulation, a single diploid cell generates four haploid daughter cells -a tetrad- which are tightly enclosed within a structure called the ascus. Confinement within the ascus is thought to enforce mating between products of the same meiotic division, minimizing outcrossing in this stage of the life cycle. Therefore, outbreeding has been commonly considered extremely rare in nature. Recent studies, however, have begun to challenge this view by uncovering a surprising ecological niche for the outbreeding of wild yeast: the guts of wasps. Yeast outbreeding in this environment likely involves an interaction between the physicochemical environment of the gut and the biological response of the cells. Preliminary results indicate that ascus breakage results from the combination of physical stresses and enzymatic digestion factors. Mixing due to movement at the gut-level can then promote the formation of multi-strain aggregates and outbreeding. Understanding the natural mechanisms leading to yeast outbreeding in nature will lead us to a better understanding of the S. cerevisiae evolution and adaptation capability. This project is a part of a HFSP grant entitled “The aphrodisiac gut”, in collaboration with research groups specialized in Chemistry from University of Sydney, in Biology from University of Turin and Mathematics from Boston University. Sala de Seminarios del IMEDEA, Esporles | |
Dj 4th jul. 9:00 am 3:30 pm | El próximo 4 de julio de 2024 se celebrará en Esporles “ConCiencia Gen Z: el reto de la transición ecológica”, el tercer encuentro de la serie de Think Tanks que organiza el IMEDEA con el objetivo de crear un espacio de debate y reflexión entre agentes sociales y expertos del ámbito científico en torno a temáticas de interés común. Esta nueva edición está especialmente dirigida a la juventud, a quien se busca empoderar y dar voz en el debate sobre el futuro del planeta. En conjunto, se reflexionará sobre el papel de la ciencia en el reto de la transición ecológica, tan necesaria en el contexto “glocal” de emergencia climática y pérdida de biodiversidad. ConCiencia Gen Z reunirá en el IMEDEA a jóvenes de las Islas Baleares con interés y compromiso hacia la emergencia climática, quienes tendrán la oportunidad, a través de metodologías participativas, de interaccionar de forma directa y constructiva con tomadores de decisiones en distintos ámbitos de la administración pública, además de personal científico experto. El objetivo es analizar colectivamente algunos de los retos ambientales que afrontamos como sociedad y de valorar cómo la ciencia puede contribuir a mejorar la comprensión y la gestión de los problemas urgentes e importantes. Durante la jornada, se abordarán temas cruciales como la comunicación de la ciencia, las perspectivas de futuro y la evidencia científica ante la crisis climática. El conjunto de participantes contribuirá con sus ideas, conocimientos y experiencias, conformando un espacio dinámico y enriquecedor en el que se fomentará el diálogo y la colaboración. Este evento está dirigido a jóvenes de 18 a 26 años, gestores y tomadores de decisiones de diferentes ámbitos de la administración pública y personal investigador en el inicio de su carrera científica. Sala de Seminarios, Agora, Salas de reuniones, IMEDEA | |
Dv 5th jul. 9:30 pm 11:30 pm | Parking IMEDEA | |
Dv 12th jul. 12:00 pm 12:30 pm | AsbtractBeaches play a crucial role in protecting coastlines from wave energy, acting as the final barrier against coastal erosion. Sandy beaches are particularly susceptible to climate change effects, such as sea level rise and storminess. Understanding the dynamics of these environments amid ongoing changes is essential for designing effective adaptation measures and management strategies. However, the various factors influencing beach morphodynamics, coupled with their dynamic nature, render the integrated monitoring of these areas both resource-intensive and challenging in terms of time, human involvement, and economic resources. Therefore, long-term and high-frequency data-sets, including morphological and wave data, remain scarce in the literature. In this talk, I will present the preliminary results of the analysis of the Son Bou Beach (Menorca, Spain) data-set, with over 13 years (2011-2023) measurements, generated by the Modular Beach Integral Monitoring Systems (MOBIMS) from the Balearic Islands Coastal Observing and Forecasting System (SOCIB). The analysis focuses on characterizing the mid and short-term response of Son Bou beach by means of the shoreline position-change detection. A negative trend in beach width was observed, as well as different responses along the beach. The presence of a coastal lagoon and its opening periods have a significant impact on the beach behavior. Sala de Seminarios del IMEDEA, Esporles | |
Dc 24th jul. 4:30 pm 5:30 pm | Prof. Aurelia Honerkamp-Smith’s Seminar: "Microfluidic measurements of protein size and shape" Microfluidic measurements of protein size and shape Individual cells sense and respond to flow, and their responses can regulate important physiological processes such as blood pressure. The mechanism of shear flow sensing in mammalian blood vessels is not well understood; in fact, the forces applied by shear stress (on the order of femtonewtons) are too small to alter individual protein conformations. However, femtonewton-sized forces can easily accomplish lateral transport of lipid-anchored extracellular membrane proteins. We observe that in both living cells and glass-supported lipid bilayers, proteins move downstream when flow is on, forming a micron-scale concentration gradient. We use fluorescence microscopy to correlate hydrodynamic force with the folded shape of lipid-anchored proteins, distinguish membrane drag on different lipid anchors, and demonstrate that similar protein transport can occur on the surface of living cells. Our results support the hypothesis that lateral transport of membrane proteins may contribute to flow sensing. Sala de Seminarios, IMEDEA | |
Dv 6th set. 12:00 pm 12:30 pm | AbstractMicrobes in Nature rarely exist in isolation. How stable, functional microbial communities establish, however, is not fully understood. Studies on synthetic communities, ‘constructed’ from few species, have shown metabolic interactions can readily emerge among microbes and can allow for their stable co-existence. The extent and stability of metabolic interactions within natural communities, however, is more difficult to study, especially over time. In this talk, I will explain our attempts to adapt and maintain a natural community in the laboratory for long-term study of species composition, metabolic interactions, and stability. We have ‘adapted’ a freshwater community to the lab under lack of carbon source and application of a 12hr light-dark cycle. This resulted in a microbial community of 17 species, including a filamentous, gliding cyanobacteria. We found that this community maintains species composition stably over a 2-year period of serial passaging. We found evidence for carbon and vitamin sharing among members of this community and genetic capacity of sulfur cycling and anoxygenic photosynthesis functions. We have also found that this system results in reproducible spatial structure formation, including cm-scale granules. We show that these granules harbour anoxic microenvironments, which could sustain some of the genetically encoded anoxic functions. The formation of structural organisation is underpinned by the gliding motility of the filamentous cyanobacteria and we find that the collective motility of many filaments leads to emergent behaviours underpinning iron acquisition. Our findings show that structural organisation driven by one species can significantly shape microenvironments and determine assembly, stability, and function of a larger microbial community. The presented system can act as a model for understanding the formation of cyanobacterial mats and granules found in Nature and how they function to underpin biogeochemical cycling of key compounds. At the same time, the presented (or similar) mid-complexity system can be adapted to biotechnological applications in carbon capture, and sunlight to chemical conversion. Sala de Seminarios del IMEDEA, Esporles | |
Dv 6th set. 12:00 pm 2:00 pm | sala d'actes son Lledó (Campus UIB) | |
Dv 13th set. 12:00 pm 12:30 pm | AbstractOver the past 30 years, satellite-based radar altimetry has revolutionized the measurement of sea level changes on global and regional scales. However, conventional altimeters, designed primarily for open-ocean observations, face significant challenges in coastal zones, particularly within 20 km of the shoreline, where radar signals are contaminated by land reflections. This limitation has impeded precise monitoring of coastal sea level variations, which are crucial for understanding local coastal processes and assessing risks to coastal communities. The Surface Water and Ocean Topography (SWOT) mission, developed by NASA and CNES, represents a breakthrough in coastal sea level observation. Equipped with the innovative Ka-band Radar Interferometer (KaRIn), SWOT offers unprecedented high-resolution (2 km) sea surface height (SSH) measurements across a two-dimensional swath, enabling detailed analysis of coastal sea level dynamics. Furthermore, SWOT's high-resolution SSH mapping enables the detection of extreme coastal sea level events, such as storm surges, providing a novel tool for monitoring and characterizing the processes involved in these phenomena. This project evaluates SWOT's performance in coastal regions by comparing it against tide gauges, ERA5 reanalysis weather model and SCHISM ocean circulation model. This study has the potential to significantly advance our understanding of coastal processes and improve monitoring efforts for extreme events, with a focus on its capacity to detect storm surges, driven by strong winds and low atmospheric pressure during intense weather events like tropical cyclones and extratropical storms which cause abrupt and significant rises in sea level along coastlines. Sala de Seminarios del IMEDEA, Esporles | |
Dv 20th set. 12:00 pm 12:30 pm | AbstractAquatic environments make up 70% of the total Planet Earth surface and marine phytoplankton is of crucial importance in the regulation of the climate as well as a key contributor to primary productivity and to global geochemical cycles. Although marine microorganisms have been widely studied during decades, we still lack widespread quantification methods of their microscopic behaviour. Here I will present my plan to study different aspects of the unicellular uniflagellate microalga Micromonas widely distributed in the world’s oceans. My focus is on its interactions with viruses, one of the most important regulators of Micromonas abundance. Questions about ecology, chemotaxis, physiology and phototaxis will be addressed -or, at least: that’s the idea! -. Sala de Seminarios del IMEDEA, Esporles | |
Dj 26th set. 9:00 am 6:00 pm | YOU4BLUE IS AN EDUCATIONAL PROJECT FOR HIGH SCHOOL STUDENTS IMPLEMENTED IN 3 MEDITERRANEAN ISLANDS (SARDINIA, CRETE, AND MALLORCA) OF 3 DIFFERENT EU COUNTRIES: ITALY, GREECE AND SPAIN. THE PROJECT (2022-2025) AIMS TO PROMOTE A BROAD EXPERIENCE OF SUSTAINABILITY FOR HIGH SCHOOL STUDENTS, WHERE MARINE RESOURCES ARE NOT ONLY SEEN AS A SOURCE OF FOOD BUT ALSO RECREATION, SPIRITUALITY, SPORTS ACTIVITIES, CULTURE. Sala de Seminarios, IMEDEA | |
Dv 27th set. 5:00 pm 10:00 pm | El próximo viernes 27 de septiembre, la ciudad de Palma celebra de nuevo la ciencia con el regreso de la European Researchers’ Night. Fecha: Viernes, 27 de septiembre de 2024. + Info en el siguiente enlace: imedea.uib-csic.es/com.....=2142 CaixaForum de Palma |