IMEDEA Calendar
 
WhenWhatWhere
Dj 14th març

One of the main challenging problems in evolutionary molecular biology is understanding the mechanisms that led to the emergence of chemical digital coding from inanimate matter. While recent advances, such as the identification of fougerite as a putative coding material have been made, there are currently no reasonable theoretical models describing this transition.



The primary objective of this interdisciplinary workshop is to bring together scientists from the fields of physics, mathematics, biology, and computer sciences to address two key questions central to the present COST action:





  • The possible characterization of living matter (encoding matter) versus inanimate (non-encoding) matter in terms of their ability to carry an adequate program compatible with life written in a realistic language.




  • Exploration of the specific role of dynamics in encoding matter and possible phase transitions between non-encoding and encoding states of matter at the origin of life.





The Workshop will contribute to the integration of Dynamical System concepts on the interrelation between coding and decoding along the flux of biological information and related aspects on the theories of the origin of life.  Moreover, will favor the development and exchange of knowhow, integration, training, and promotion of specific collaborations in the modelling of genomic information. The anticipated outcome of this activity will serve as an integrative synthesis, interweaving the research threads developed in the Bolzano and Porto Conferences and Workshops. In doing so, it will consolidate the findings related to the application of the dynamical systems approach in understanding the fundamentals of the flow of genetic information.



The spirit of DYCOMAT is to actively promote collaboration among its participants. In this regard, the organization intends not to be a mere sequence of informative talks but mainly to foster effective collaborative working tables to address the specific objectives of DYNALIFE.


Edificio de Sa Riera, UIB
Add event to google
Show in Google map
Dv 15th març
4:00 pm
4:30 pm



Asbtract



Innovación a través de Datos: Bienvenida al Data Lab" tiene como objetivo presentar el Data Lab del IMEDEA, un nuevo servicio diseñado para apoyar a nuestros equipos de investigación mediante el análisis avanzado de datos y la Inteligencia Artificial. En esta sesión, exploraremos las motivaciones detrás de la creación del Data Lab, detallaremos los servicios y prestaciones que ofrece, y compartiremos ejemplos concretos de proyectos en los que el Data Lab ya está marcando una diferencia significativa. Además, proporcionaremos información sobre cómo los investigadores pueden acceder a estos recursos y colaborar con nosotros para potenciar sus investigaciones.



 



Link to the video here


Sala de Seminarios del IMEDEA, Esporles
Add event to google
Show in Google map
Dv 22nd març
4:00 pm
4:30 pm



Abstract



Marine macrophyte ecosystems are considered as a fundamental habitat throughout the world. However, these communities are seriously threatened by the continuous increase in anthropogenic activities and are highly vulnerable to the pressures derived from global change.



This has led to an increased interest in restoration, and in assessing different factors that may promote their recovery and resilience. In seagrasses, firsts life stages (seeds and seedlings) can be critical when determining the natural recovery of the ecosystem. In this sense, identifying the factors that positively influence the development and establishment of these early stages, particularly considering future stressors, is essential for ecosystem conservation and restoration. The study of microbiome can be a determining factor to understand the functionality and resilience of marine ecosystems. Although the study of seagrass microbiomes is still in its early stages, the beneficial effect of microorganisms has already been described in terrestrial plants, so this study aims to evaluate the influence of microbiome on germination and development of C. nodosa seeds.



 



To test the hypothesis that the presence of certain microorganisms influences the development of seagrass, a manipulative factorial experiment was carried out in the laboratory using C. nodosa seeds. Six treatments from the interaction between two factors were examined: (1) sterilization (or not) of the seeds and (2) sediment type (sediment from vegetated environments, sediment from non-vegetated environments or artificial sediment). Germination success was strongly influenced by the presence of the seed microbiome, and sediment type (and thus soil microbiome) also influenced germination and seed development. These results are important to understand natural drivers of seagrass germination success and to consider for restoration techniques.


Sala de Seminarios del IMEDEA, Esporles
Add event to google
Show in Google map