IMEDEA Calendar |
When | What | Where | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dl 15th abr. to Dl 22nd abr. | PREREGISTRO al Curso de Buceo Científico 2024 abierto: Se anuncia que el preregistro al curso de buceo científico 2024 está abierto a partir del 05 de marzo hasta el 13 de marzo. Enlace al formulario de registro: forms.gle/ZtphhHJAnsFqXJS89 Fechas del curso: 15 al 23 de Abril (excluyendo el fin de semana) Preguntas a: lwels@imedea.uib-csic.es o 971611716
IMEDEA y Puerto de Pollença | |||||||||||||||||||||||
Dg 21st abr. 5:00 pm 6:00 pm | Cuenta cuentos científico para peques: Celebramos Sant Jordi en la Biblioteca Municipal de EsporlesEl lunes 22 a las 17 h, en colaboración con la biblioteca municipal de Esporles, realizaremos la lectura del cuento infantil "Posidonia, la dama de la mar", de Harold Jimenez Canizales. Este precioso libro ilustrado combina la fantasía literaria con los principios científicos de la conservación marina, transportando a los más pequeños a un viaje único en el que la complejidad de los impactos que afectan a la Posidonia oceanica, la curiosidad y el aprendizaje se entrelazan de manera positiva y encantadora.
Biblioteca Municipal d'Esporles, C/ de Ramon Llull, 3. Esporles | |||||||||||||||||||||||
Dl 22nd abr. 2:00 pm 4:00 pm | Curso Base Programacion Sala reuniones 3 | |||||||||||||||||||||||
Dj 25th abr. 2:00 pm 4:00 pm | Curso Base Programacion Sala reuniones 3 | |||||||||||||||||||||||
Dv 26th abr. 12:00 pm 12:30 pm | AbstractThe generation and propagation of waves towards the coastal regions during storm events can substantially increase coastal hazards associated with extreme sea levels. While the Mediterranean Sea is characterized by a fetch-limited environment, the progression of extra-tropical cyclones over its surface often engenders powerful waves. As climate numerical models consistently converge towards a global warming climate over the past few decades, the present wave climate is expected to undergo alterations. However, the reliability of the model projections differ among climate variables, exhibiting for instance higher confidence in the temperature than in precipitation variables. This study investigates future changes in the wave climate across the Mediterranean region using an extensive ensemble of wave numerical simulations. These simulations were forced with wind fields from thirty-one GCM-RCMs (general circulation - regional climate models) of the European Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX), integrating WaveWatch III and SCHISM numerical models. Future changes in the mean and intense (quantile 0.95) wave climate of significant wave height (Hs), peak wave period (Tp), peak wave direction (Dp) are assessed. Furthermore, we evaluate changes in 100-year return levels of Hs toward the end of the century. Extreme events from each GCM-RCM are aggregated into a single coherent distribution, following a bias correction procedure assuming the Cumulative Distribution Function (CDF) of extreme events to adhere to either a parametric Gumbel or Generalized Extreme Value (GEV) CDF, individually for each model. Return levels are then computed by fitting a GEV distribution to the unified distribution for both historical and future periods. Our findings reveal an intensification of extreme waves towards the end of the century in several areas of the Mediterranean basin. Despite limitations inherent to bias-correction methods and return level computation, our study underscores the contrasting outcomes between analyzing the entire statistical distribution versus focusing solely on the tail, emphasizing the importance of considering both aspects in wave climate projections. Sala de Seminarios del IMEDEA, Esporles | |||||||||||||||||||||||
Dt 30th abr. 10:30 am 1:30 pm | Entrega de premios de los proyectos ganadores del certamen "Ocean Odyssey Challenge” del proyecto Ocean Night. IMEDEA | |||||||||||||||||||||||
Dj 2nd maig 10:00 am 11:00 am | Sala de seminarios IMEDEA | |||||||||||||||||||||||
Dv 3rd maig 12:00 pm 1:00 pm | AbstractSunlight drives virtually all life on the Earth’s surface, with about 50% of primary productivity occurring in marine systems. Yet, this traditional view of phototrophy changed radically with the discovery of marine bacterial rhodopsins (i.e., proteorhodopsins; PR), over twenty years ago. PRs are simple light-driven proton pumps present in over 80% of surface bacterioplankton, which allow them to transform light into biochemical energy. Combining culture-based physiology studies with (meta)-genomics, (meta)-transcriptomics, and environmental quantifications we are just starting to understand the role that PR-based photoheterotrophy plays in the ocean. In this presentation, I will discuss the knowns and unknowns of PR-phototrophy and what we are starting to learn from looking at its natural distributions in different oceanographic basins, ranging from extreme ultraoligotrophic regions to high productivity environments Sala de seminarios IMEDEA | |||||||||||||||||||||||
Dl 6th maig | TREC Sequencing Course Mallorca Introductory course to Next Generation Sequencing tecniques organized within the Maria de Maeztu Programme in collaboration with EMBL. ScheduleMay 6th 2024 Monday
Wet lab lectures
May 7th 2024 Tuesday
Dry lab lectures
Sala de Seminarios, IMEDEA | |||||||||||||||||||||||
Dl 6th maig 2:00 pm 4:00 pm | Curso Base Programacion Sala reuniones 3 | |||||||||||||||||||||||
Dt 7th maig 12:00 pm 1:00 pm | SEMINARIO JB Raina (UT Sydney) - Uncovering complex chemically mediated microbial behaviours Abstract The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While natural chemical hotspots produce gradients comprised of hundreds to thousands of different chemical compounds, we do not know how this chemical diversity affects the chemotactic responses of bacteria. I will present results from two studies that reveal some unexpected responses when bacteria are exposed to complex chemical mixtures. Using in situ and laboratory-based assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharide laminarin, but chemotaxis towards this large molecule is enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. Using a novel chemotaxis choice assay, we then directly expose a model marine bacterium to four potent chemoattractants simultaneously (i.e., one monosaccharide and three amino acids). Although the bacterium is strongly chemotactic to each of these molecules in isolation, when these four molecules are provided simultaneously, the cells exhibit a striking response by swimming towards only one of them. These results start shedding light on the synergistic effects (e.g., laminarin and DMSP) and sharp chemical preferences modulating the behaviours of bacteria. Sala de Reuniones, 2ª planta, IMEDEA | |||||||||||||||||||||||
Dc 8th maig 10:45 am 12:00 pm | INTERNATIONAL VISITING SCHOLAR PROGRAMME (IVSP) Abstract Seagrass meadows and the services they provide are declining worldwide as a result of human perturbations. Along the Swedish W coast, almost 60% of the seagrass has been lost since the 1980's, representing a loss of approximately 190 km2 of seagrass. The seagrass Zostera marina, L. (eelgrass) is the dominant macrophyte on soft bottoms along the Swedish coast. The decrease in seagrass worldwide has lead to many restoration programs but their success rate is very low due to the regime shift and feedback mechanisms that also prevent natural recovery. This presentation aims to provide a review on the restoration successes and challenges on eelgrass in Sweden. For example, positive feedbacks generated by water turbidity due to sediment resuspension, drifting macroalga covering eelgrass transplants and the presence of eelgrass predators such as shore crabs have been identified as causes affecting restoration success. To overcome these issues, restoration techniques using sand-capping have shown to be successful to reintroduce eelgrass in areas where it was lost. An interdisciplinary approach using field and laboratory experiments linked with hydrodynamical modeling showed to be key to understand the complex coastal ecological dynamics. In addition, new methods to monitor coastal habitats such as seagrass meadows and marine mammals (dugongs and seals) using aerial drones and machine learning will be presented. These new technologies can contribute to faster data collection and data analysis for ecological studies and to provide relevant information to coastal managers and decision makers working on ecological conservation. Bio Eduardo Infantes is a researcher at the University of Gothenburg in Sweden, where he leads the Seagrass Ecology Lab research group based at Kristineberg marine station. With a focus on seagrass ecology over the last 18 years, his main interests are in 1) studying interactions between fluid dynamics and marine vegetation through field data, mesocosm experiments and flume studies, 2) restoration of coastal habitat using seagrass within the interdisciplinary ZORRO group, and 3) monitoring of seagrass beds and marine mammals (e.g. harbor seals, manatees, and dugongs) using drones and AI. With an interdisciplinary profile, he collaborates in research and management, contributing to environmental policies in coastal restoration and monitoring. Sala de Seminarios, IMEDEA |