IMEDEA Calendar | ![]() |
When | What | Where |
---|---|---|
Dv 12th jul. 12:00 pm 12:30 pm | AsbtractBeaches play a crucial role in protecting coastlines from wave energy, acting as the final barrier against coastal erosion. Sandy beaches are particularly susceptible to climate change effects, such as sea level rise and storminess. Understanding the dynamics of these environments amid ongoing changes is essential for designing effective adaptation measures and management strategies. However, the various factors influencing beach morphodynamics, coupled with their dynamic nature, render the integrated monitoring of these areas both resource-intensive and challenging in terms of time, human involvement, and economic resources. Therefore, long-term and high-frequency data-sets, including morphological and wave data, remain scarce in the literature. In this talk, I will present the preliminary results of the analysis of the Son Bou Beach (Menorca, Spain) data-set, with over 13 years (2011-2023) measurements, generated by the Modular Beach Integral Monitoring Systems (MOBIMS) from the Balearic Islands Coastal Observing and Forecasting System (SOCIB). The analysis focuses on characterizing the mid and short-term response of Son Bou beach by means of the shoreline position-change detection. A negative trend in beach width was observed, as well as different responses along the beach. The presence of a coastal lagoon and its opening periods have a significant impact on the beach behavior. Sala de Seminarios del IMEDEA, Esporles | |
Dc 24th jul. 4:30 pm 5:30 pm | Prof. Aurelia Honerkamp-Smith’s Seminar: "Microfluidic measurements of protein size and shape" Microfluidic measurements of protein size and shape Individual cells sense and respond to flow, and their responses can regulate important physiological processes such as blood pressure. The mechanism of shear flow sensing in mammalian blood vessels is not well understood; in fact, the forces applied by shear stress (on the order of femtonewtons) are too small to alter individual protein conformations. However, femtonewton-sized forces can easily accomplish lateral transport of lipid-anchored extracellular membrane proteins. We observe that in both living cells and glass-supported lipid bilayers, proteins move downstream when flow is on, forming a micron-scale concentration gradient. We use fluorescence microscopy to correlate hydrodynamic force with the folded shape of lipid-anchored proteins, distinguish membrane drag on different lipid anchors, and demonstrate that similar protein transport can occur on the surface of living cells. Our results support the hypothesis that lateral transport of membrane proteins may contribute to flow sensing. Sala de Seminarios, IMEDEA |