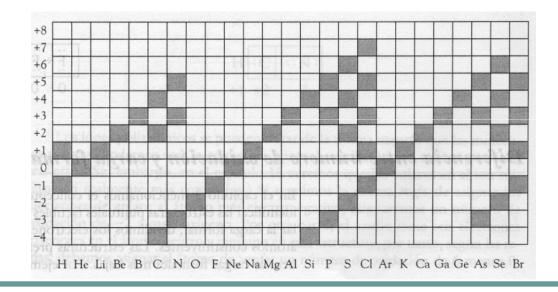
Tema 10: Importancia del potencial redox en la biogeoquímica de los ecosistemas acuáticos

Salvador Sánchez Carrillo

Departamento de Biogeoquímica y Ecología Microbiana Museo Nacional de Ciencias Naturales-CSIC

email: sanchez.carrillo@mncn.csic.es

Índice

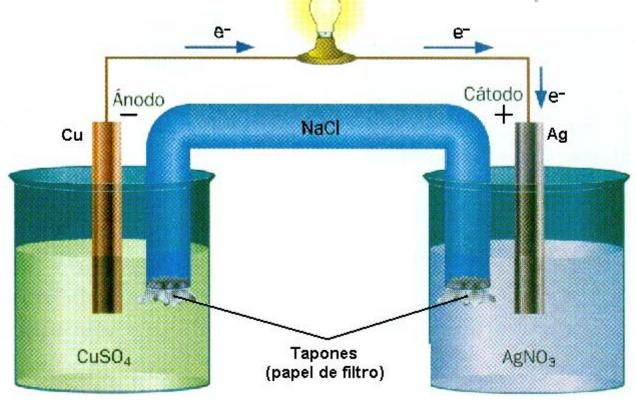

- Introducción
- Revisión del concepto "estado de oxidación"
- Potencial Redox
- Redox en ambientes naturales
- Desnitrificación y otras transformaciones del N en condiciones reductoras
- Reducción de sulfatos
- Metanogénesis
- Transformaciones en aguas subterráneas

Introducción

- Oxígeno moderadamente soluble en agua (difusión 10⁴ veces más lenta que en el aire)
- Respiración heterótrofa puede agotar el oxígeno en sistema
- Columna sedimento cambia de condiciones en pocos mm (metabolismo aerobio de la materia orgánica → anaerobio, aunque coexisten)
- Ciclos de nutrientes controlados por potencial redox y transformaciones microbianas (frecuentemente a ↓↓ O₂)
- Procesos anaerobios (desnitrificación, reducción de sulfatos, metanogénesis) liberan N₂, N₂O, H₂S y CH₄
- Otros procesos microbianos cambian el estado de oxidación de Fe y Mn
- Descomposición anaerobia (lenta) es amenudo incompleta

 humedales almacenan grandes cantidades de C-org

 Estado de oxidación es una medida de la carga de un átomo en cualquier forma química (suma de cargas positivas y negativas).



Reglas básicas para el estado de oxidación:

- 1) De una sustancia elemental (H_2, O_2) es 0.
- 2) De un ión es igual a la carga iónica (K+= +1, Ca²⁺= +2, Fe³⁺=+3, Cl⁻=-1, O²⁻=-2).
- 3) H⁺ siempre es +1 y O siempre es -2.
- 4) La suma de los nº de oxidación en una molécula neutra es 0 (H2O = 0 → O(-2 X 1=-2) + H (+1 X 2=+2))
- 5) En un ión la suma de los nº de oxidación de todos los atómos es igual a la carga del ión (NO₃⁻ = -1 → O(-2 x 3 =-6) + N(+5))
- 6) En compuestos orgánicos puede no ser posible asignar el nº oxidación a los átomos de C, pero puede calcularse el estado del compuesto completo añadiendo los nº de oxidación de los átomos H y O del compuesto:

$$(CO_2 = 0 \rightarrow O(-2 \times 2=-4) + C(+4))$$

 $(C6H12O6 = 0 \rightarrow O(-2 \times 6=-12) + H(+1 \times 12=+12))$

Cuando una lámina de cobre se introduce e<mark>n una so</mark>lución de nitrato de plata ocurre que ...

$$Cu(s) + 2Ag^{+}(ac) \longrightarrow Cu^{2+}(ac) + 2Ag(s)$$

Cuando una lámina de cobre se introduce en una solución de nitrato de plata ocurre que ...

$$Cu(s) + 2Ag^{+}(ac) \longrightarrow Cu^{2+}(ac) + 2Ag(s)$$

Esta reacción puede describirse separadamente por medio de dos semireacciones:

$$Cu(s) \longrightarrow Cu^{2+}(ac) + 2e^{-}$$

oxidación

Pierde electrón!

$$2Ag^{+}(ac) + 2e^{-} \longrightarrow 2Ag(s)$$

Gana electrón! reducción

Siempre que en una reacción algún elemento se oxida, forzosamente, algún otro se reduce.

Términos básicos:

- Dador de electrones (electron donor) es la substancia que se oxida o pierde electrones, también referida como reductor o agente reductor
 - Ej. Compuestos orgánicos o compuestos inorgánicos reducidos (NH₄⁺, Fe²⁺, Mn²⁺, S²⁻, CH₄ y H₂)
- Receptor de electrones (electron acceptor) es la sustancia que se reduce o gana electrones, también referida como oxidante o agente oxidante.
 - Ej. O₂, y, alternativamente, NO₂-, NO₃-, Fe³⁺, Mn⁴⁺, SO₄², HCO₃-

• Ambientes anaeróbicos:

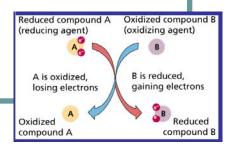
receptores de electrones

dadores de electrones

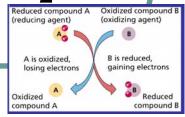
• Ambientes aeróbicos:

dadores de electrones

receptores de electrones

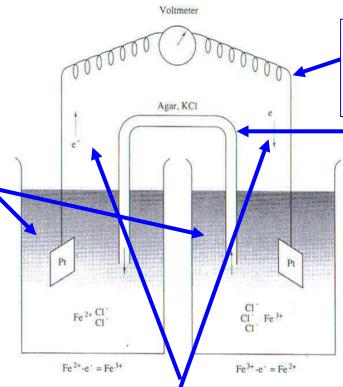

- La mayoría de reacciones que ocurren en la naturaleza (incluyendo en las células) son alguna forma de reacciones redox
- Los procesos de oxidación y reducción ejercen un importante control sobre la distribución de especies químicas (O₂, Fe²⁺, H₂S, CH₄, etc.) en el ambiente
- Las reacciones redox suponen una transferencia de electrones entre átomos, y suelen ser lentas, pero a menudo son aceleradas mediante catalizadores bacterianos (enzimas)

 $2 \text{Fe}^{2+} + \text{MnO}_2 + 4 \text{H}^+ \leftrightarrow 2 \text{Fe}^{3+} + \text{Mn}^{2+} + \text{H}_2 \text{O}$ El **Fe** se **oxida** (dador de electrones) y **reduce** al **Mn** (**IV**) (receptor de electrones)


- El potencial redox es una medida de la actividad de los electrones.
- Está relacionado con el pH y con el contenido de oxígeno.
- Es análogo al pH ya que el pH mide la actividad de protones y el potencial redox mide la de los electrones.

Eh = $1,234 - 0,058 \text{ pH} + 0,0145 \log (10) \text{ Po}$

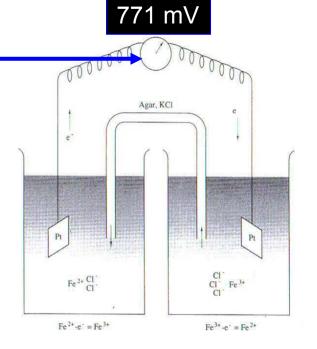
Po: presión parcial de O₂ (atm)


- Expresa la tendencia de un ambiente a dar o recibir electrones
- Ambientes oxidantes tienen un alto potencial redox porque O₂ están disponibles "receptores de electrones"
- Organismos heterótrofos usan al O₂ como "receptor de electrones"
- Electrones derivan del metabolismo de compuestos orgánicos reducidos que se obtienen del ambiente y se oxidan a CO₂

- En sistemas naturales, las reacciones Redox ocurren hasta que hay una limitación en la disponibilidad de electrones
- Esta disponibilidad esta controlada por una reacción Redox intermedia predominante
- Entonces, el sistema estará equilibrado en un determinado valor o cerca de el (análogo a neutralizar pH con un ácido débil)

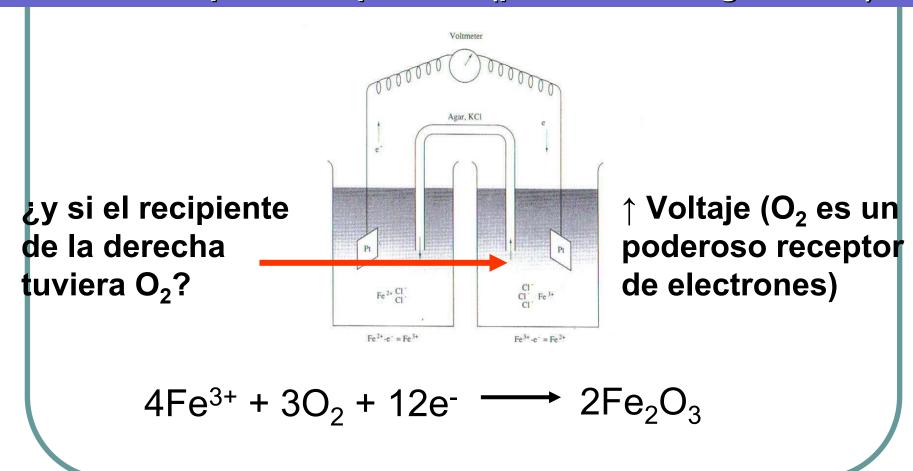
Celda electroquímica hipotética (pila voltáica o galvánica):

Recipientes con diferentes estados de oxidación de Fe (Fe²⁺ y Fe³⁺)

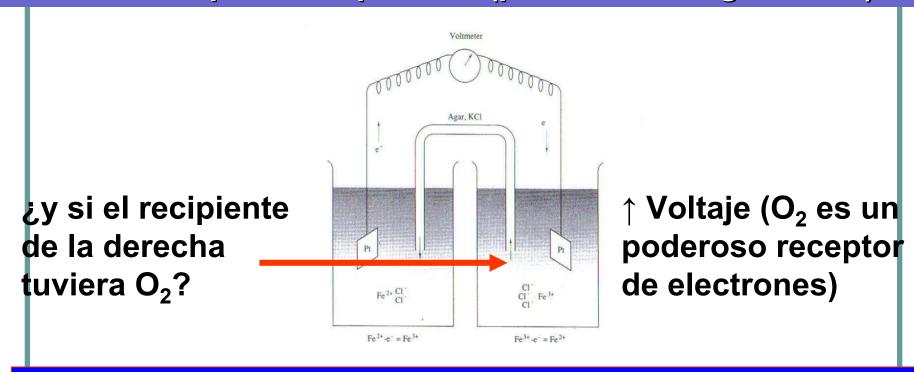


Alambre conecta ambos recipientes (voltímetro; electrodo Pinnerte) concentrada de electrolito, KCI) que permite la difusión de aniones (CI-) en dirección opuesta al flujo de e-

e- fluyen de izquierda a derecha hasta equilibrio


Celda electroquímica hipotética (pila voltáica o galvánica):

Flujo de electrones cesa aplicando 771 mV

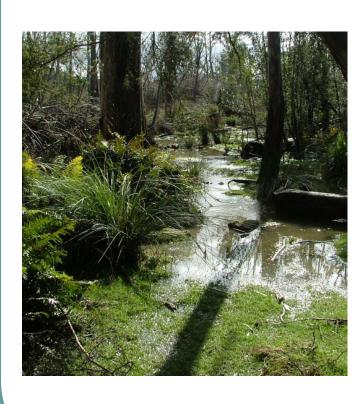


$$2Fe^{3+}$$
 (aq) + $2Cl_{-}$ (aq) \longrightarrow $2Fe^{2+}$ (aq) + Cl_{2} (aq)

Celda electroquímica hipotética (pila voltáica o galvánica):

Celda electroquímica hipotética (pila voltáica o galvánica):

Fe³+ no puede aceptar e⁻ en presencia de O₂ En ausencia de O₂ = Fe³+ → Fe²+ Cond. aeróbicas: Fe³+ domina en ambiente Cond. anaeróbicas: Fe²+ domina en ambiente


En ambientes naturales...

- ✓ No aislados en recipientes
- ✓ No contienen una mezcla simple de constituyentes

¿Qué medimos entonces?

Una expresión del desequilibrio de un conjunto de constituyentes en relación a un electrodo estándar que contiene H₂ (gas; SHE: Standard Hydrogen Electrode) cubriendo una solución de conocida [H⁺]

En ambientes naturales...

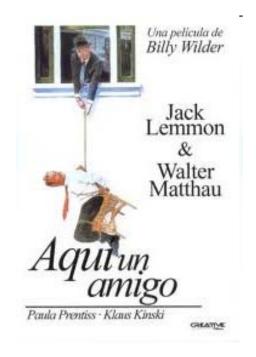
- 1) Electrodo de platino mide el potencial del ambiente sin alterar la tendencia de e- a moverse a través de los constituyentes
- 2) Eh mide voltaje requerido para prevenir la conversión de H⁺ y H₂ en el electrodo estándar

■ Eh determina la distribución de todos los equilibrios redox → puede ser determinado mediante la ecuación de *Nernst*, aunque, en la práctica, se mide con un electrodo de referencia.

$$E = E^{0} - \frac{RT}{nF} \ln \frac{[productos]}{[reactivos]}$$

E = Potencial de celda

E⁰= Potencial de reducción estándar


R = cte. del gas ideal (8.31 V C /mol K)

T = temperatura(K)

n =moles de electrones transferidos

F = cte. de Faraday (9.65 x 10⁴ C/mol ó 96.5 k**J**/V)

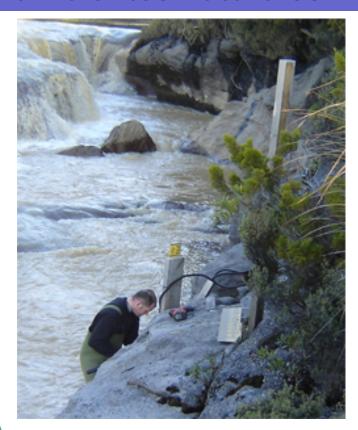
[...] = concentraciones molares

¡Su precio ronda los 1.000 €!

En ambientes naturales...

1)Si hay oxígeno...

Acepta electrones del electrodo de Pt...

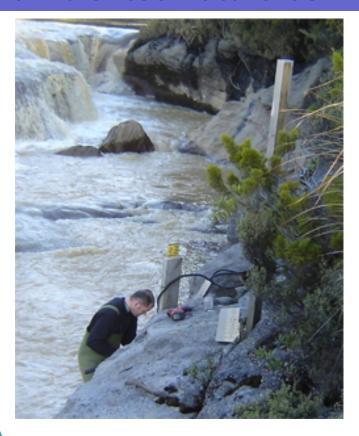

$$O_2 + 4e^- + 4H^+ \longrightarrow 2H_2O$$

Generados en el electrodo de H₂...

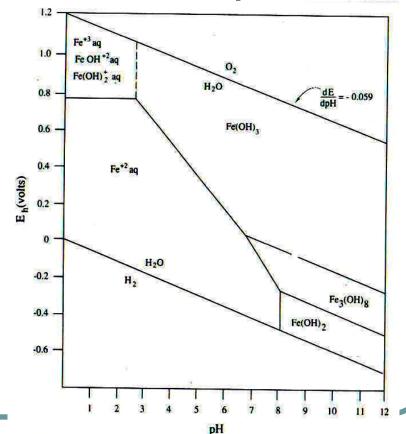
Voltímetro: 1100 mV a pH=2

En ambientes naturales...

2) Si <u>no</u> hay oxígeno...


Otros constituyentes aceptan electrones...

Generados en el electrodo de H₂...



Voltimetro: 770 mV a pH=2

En ambientes naturales...

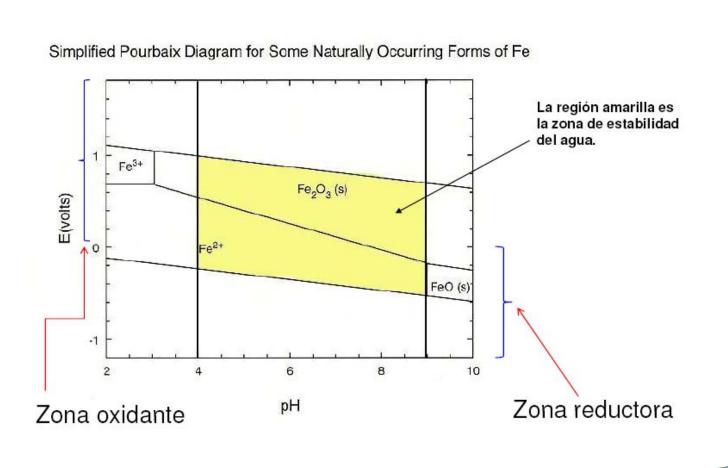
3) Cómo afecta el pH...

En ambientes naturales...

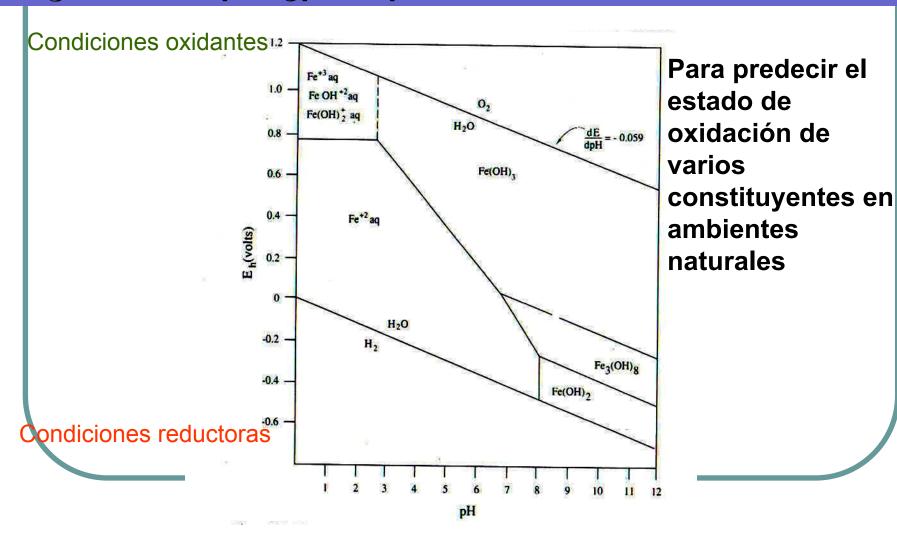
3) Cómo afecta el pH...

En ambiente anóxicos a pH≥5...

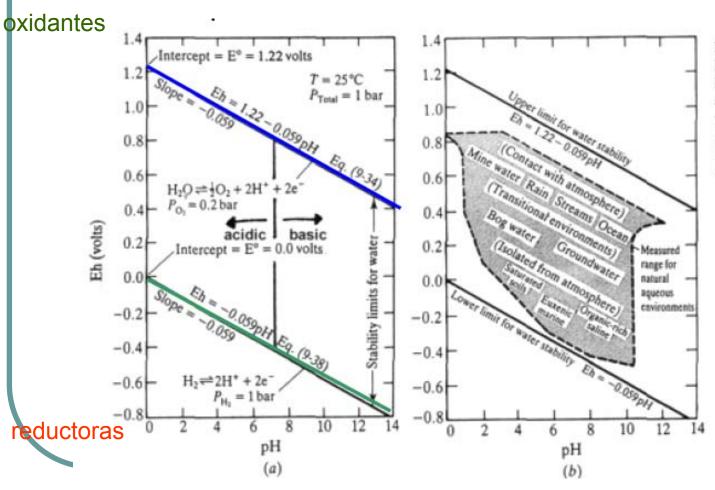
$$Fe^{2+} + 3H_2O \implies Fe(OH)_3 + 3H^+ + e^-$$



Voltímetro: 400 mV a pH=5



pH<7
$$\rightarrow$$
 Fe²⁺ \longrightarrow Peat bogs


En ambientes naturales...

Diagramas Eh-pH, ¿para qué sirven?

Diagramas Eh-pH, un ejemplillo...

FIGURE 9-1

Framework of Eh-pH diagorines in (a) define the upp and lower [Eq. (9-38)] state water at 25°C and 1 bar. T in (b) shows the measured lim in natural environments. (Remission from Baas Becking

Diagramas Eh-pH, un ejemplillo...

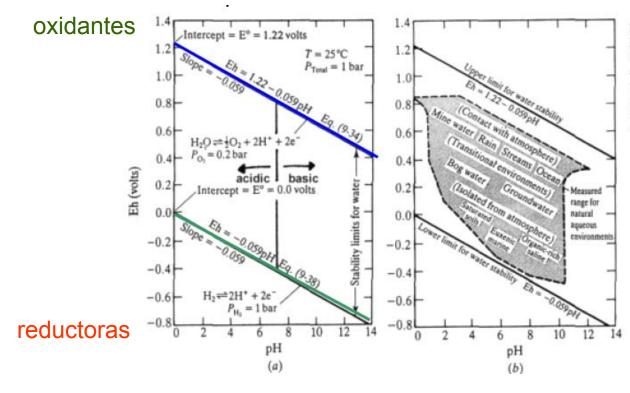
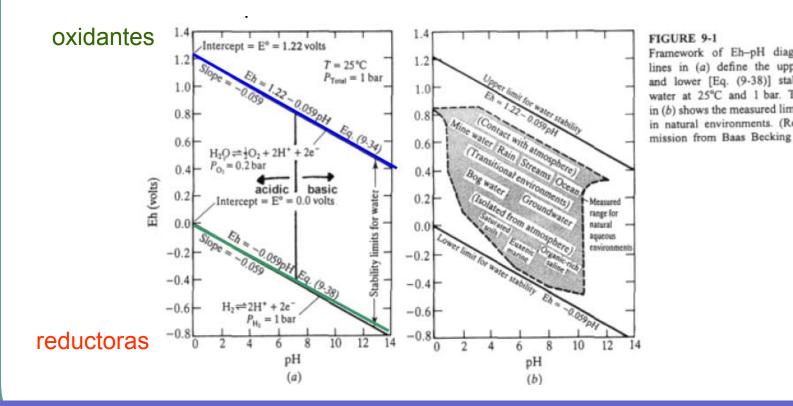



FIGURE 9-1
Framework of Eh-pH diagilines in (a) define the upp and lower [Eq. (9-38)] stat water at 25°C and 1 bar. T in (b) shows the measured lim in natural environments. (Remission from Baas Becking

- Cuanto más lejos de la atmósfera (fuente de luz, CO_2 y O_2), más condiciones reductoras \rightarrow respiración domina sobre fotosíntesis.
- •↑ materia orgánica → ↑ condiciones reductoras → ↓ E_h

Diagramas Eh-pH, un ejemplillo...

FIGURE 9-1 Framework of Eh-pH diag lines in (a) define the upp and lower [Eq. (9-38)] stat water at 25°C and 1 bar. T in (b) shows the measured lim in natural environments. (Re

IMPORTANCIA BIOGEOQUÍMICA:

E_h determina que modos de actividad microbiana son posibles en un ambiente en un momento dado

Suelos y sedimentos:

- ↑ resistencia a cambios en E_h → EQUILIBRIO REDOX
- 1)Presencia de O₂:
 ↑ resistencia a cambios en E_h mantenida por O₂ (↑ E_h)
- 2) Ausencia de O_2 :
 - ↓↓↓ E_h rápidamente → Reducción de constituyentes débilmente oxidantes (NO₃-, Mn⁴⁺, Fe³⁺ y SO₄²⁻)
 - Si [Fe³⁺] y [Mn⁴⁺] ↑↑↑ → ↓↓↓ E_h lento

¡Ambientes oxigenados tienen E_h ≥ +600 mV!

¿Qué ocurre cuando un suelo se inunda?

Eh ↓ progresivamente...(en la columna de agua)

Figure 7.3 Changes in the chemical composition of the waters overlying a flooded soil as a function of time after flooding. Note that the reduction of iron does not begin until fully anaerobic conditions are achieved. Redox potential is expressed at pH 7, that is, E_{h7} . From Turner and Patrick (1968).

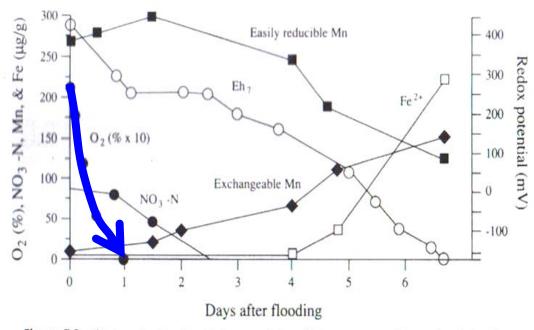
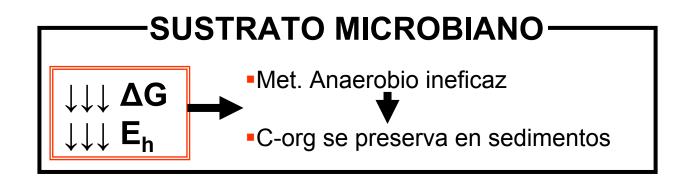


Figure 7.3 Changes in the chemical composition of the waters overlying a flooded soil as a function of time after flooding. Note that the reduction of iron does not begin until fully anaerobic conditions are achieved. Redox potential is expressed at pH 7, that is, E_{h7} . From Turner and Patrick (1968).

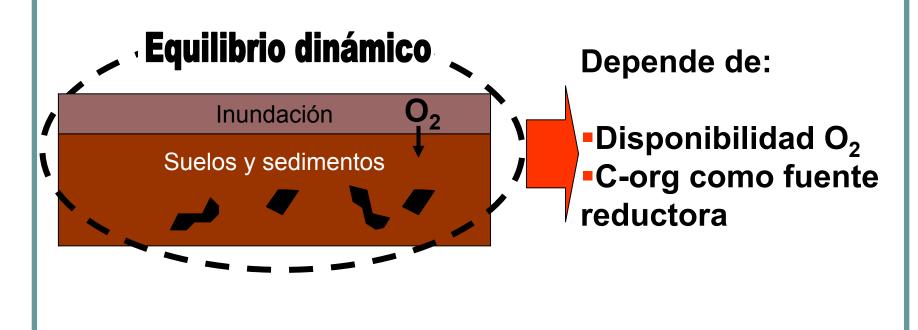
- •Difusion de O₂ en suelos inundados es muy lenta → ↓↓↓ Eh ↑ profundidad
- •Respiración heterotrófica de C-org consume O₂
- •Si C-org $\uparrow\uparrow\uparrow$ \rightarrow fuerte gradiente de E_h en < 2 mm de profundidad

Secuencia termodinámica de reducción de sustancias inorgánicas (pH=7 y 25º C)


Reacción	E _h (mV)	ΔG (kcal mol ⁻¹ /e ⁻)*
Reducción (desaparición) de O ₂	812	-29.9
Reducción de NO ³⁻	747	-28.4
Reducción de Mn ⁴⁺ a Mn ²⁺	526	-23.3
Reducción de Fe ³⁺ a Fe ²⁺	-47	-10.1
Reducción de SO ₄ ²⁻ a H ₂ S	-221	-5.9
Reducción de CO ₂ a CH ₄	-244	-5.6

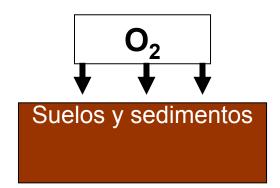
^{*}Asumiendo acoplamiento a la reacción de oxidación:

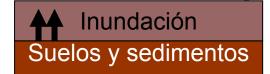
 $[\]frac{1}{4}CH_{2}O + \frac{1}{4}H_{2}O \rightarrow \frac{1}{4}CO_{2} + H^{+} + e^{-}y \Delta G = -RT \ln(K)$


Reducción en la energía metabólica determina el orden de los procesos microbianos anaerobios:

- ΔG ↑↑↑ respiración aerobia (-29.9) y ΔG ↓↓↓ en metanogénesis (-5.6)
- Población microbiana con $\uparrow \uparrow \uparrow \Delta G$ supera al resto a cualquier E_h (coexistencia de oxidac. y desnitrificac.)

Redox en ambientes naturales


¿Qué ocurre cuando un suelo se inunda?



Redox en ambientes naturales

FLUCTUACIONES ESTACIONALES DE LA INUNDACIÓN

Inundación Suelos y sedimentos

- 1) Retrasa la posición de reacciones redox
- 2) Productos de reducciones previas se convierten en sustratos para bacterias aeróbias

Secuencia de procesos Redox

Organic Matter

proteins 50% C, 80% N (soluble/structural) polysaccharides 20-30% C, 10% N (soluble/structural) nucleaic acids 10% C, 5% N. 50% P lipids 10% C, few % N

oxic degradation nitrate reduction

proteins (structural), peptides polysaccharides (structural), oligosaccharides, sugars, nucleic acids, lipids

extracellular hydrolysis fermentation

volatile fatty acids

sulfate reduction metanogenesis

CO2, CH4, NH3, HPO3 -, H2S

Mineralización

proteins 50% C, 80% N (soluble/structural) polysaccharides 20-30% C, 10% N (soluble/structural) nucleaic acids 10% C, 5% N. 50% P lipids 10% C, few % N

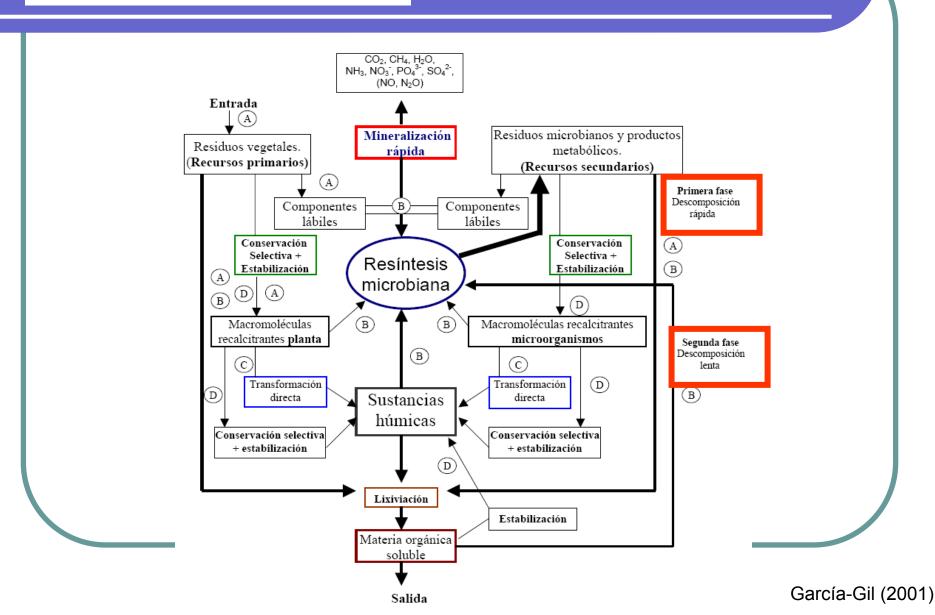
oxic degradation nitrate reduction

soluble constituents CO₂, NO₃⁻, HPO₃⁻

proteins (structural), peptides polysaccharides (structural), oligosaccharides, sugars, nucleic acids, lipids

extracellular hydrolysis fermentation

 CO_2 , NH_3 , HPO_3^- , H_2


volatile fatty acids

sulfate reduction metanogenesis

CO2, CH4, NH3, HPO3-, H2S

Mineralización

proteins 50% C, 80% N (soluble/structural) polysaccharides 20-30% C, 10% N (soluble/structural) nucleaic acids 10% C, 5% N. 50% P lipids 10% C, few % N

oxic degradation nitrate reduction

soluble constituents CO₂, NO₃⁻, HPO₃⁻

proteins (structural), peptides polysaccharides (structural), oligosaccharides, sugars, nucleic acids, lipids

extracellular hydrolysis fermentation

 CO_2 , NH_3 , HPO_3^- , H_2

volatile fatty acids

sulfate reduction metanogenesis

CO2, CH4, NH3, HPO3 -, H2S

Fig. 2 Microbial nitrogen transformations in wetland ecosystems. *DNRA* dissimilatory nitrate reductase to ammonium; *AOB* ammonia-oxidizing bacteria; *AOA* ammonia-oxidizing archaea

Es un proceso microbiano de reducción desasimiladora del NO_3^- que da como producto final N_2 gaseoso, a través de una serie de productos intermedios gaseosos (NO_x)

Es desasimiladora (dissimilatory) porque la reducción de NO₃- ocurre con la degradación de la materia orgánica.

$$NO_3^- \rightarrow NO_2^- \rightarrow NO + N_2O \rightarrow N_2$$
 (g)

ó como una reacción redox:

$$2 \text{ NO}_3^- + 10 \text{ e}^- + 12 \text{ H}^+ \rightarrow \text{N}_2 + 6 \text{ H}_2\text{O}$$

$$NO_3^- \rightarrow NO_2^- \rightarrow NO + N_2O \rightarrow N_2$$
 (g)

ó como una reacción redox:

$$2 \text{ NO}_3^- + 10 \text{ e}^- + 12 \text{ H}^+ \rightarrow \text{N}_2 + 6 \text{ H}_2\text{O}$$

El NO_3 es respirado por los microorganismos que lo reducen (receptor de electrones) en respuesta a la oxidación de la materia orgánica (dador de electrones). Dónde hay desnitrificación: donde la tasa de consumo de O_2 sea mayor a su suministro: suelos, aguas subterráneas, humedales, lagos, sedimentos marinos, etc.

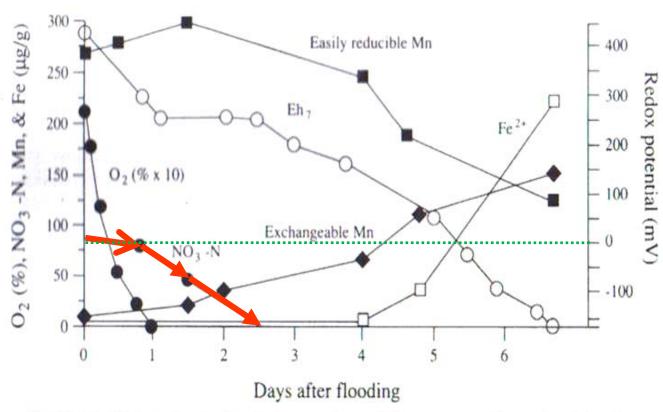
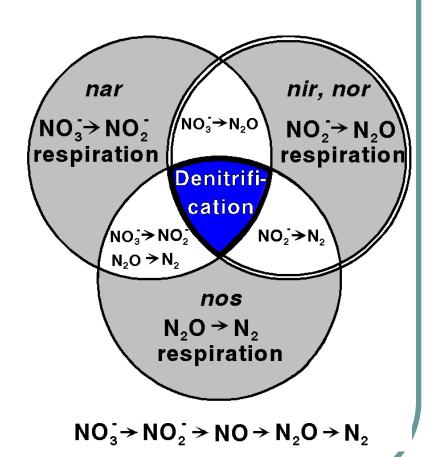
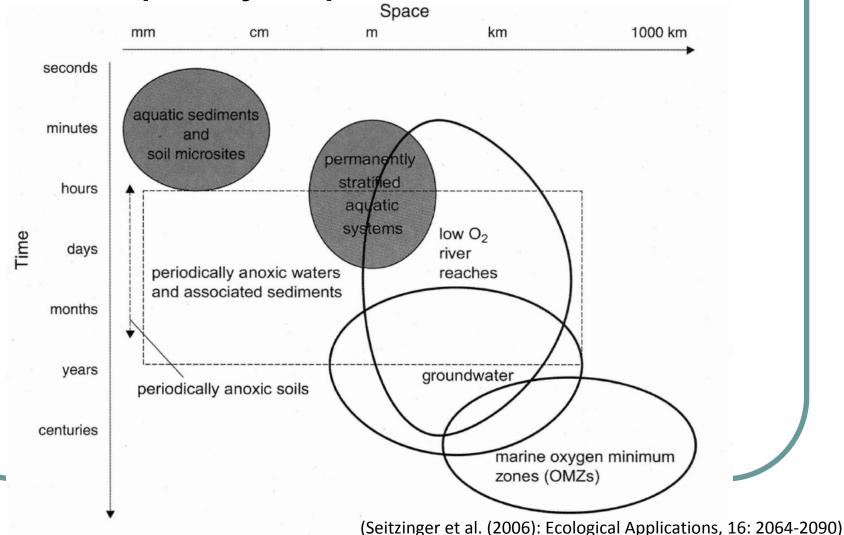


Figure 7.3 Changes in the chemical composition of the waters overlying a flooded soil as a function of time after flooding. Note that the reduction of iron does not begin until fully anaerobic conditions are achieved. Redox potential is expressed at pH 7, that is, E_{h7} . From Turner and Patrick (1968).


Quienes realizan la desnitrificación:

Bacterias heterotróficas:


Paracoccus denitrificans y varias pseudomonas

Bacterias autotróficas (en menor medida): *Thiobacillus denitrificans*

Genes (vías enzimáticas)
identificados: nar (nitrate
reductasa), nir, nor (nitrite
reductasa), nos (nitrous oxide
reductasa) y nrf (nitrate to
ammonium reductasa).

Escala espacial y temporal de la desnitrificación

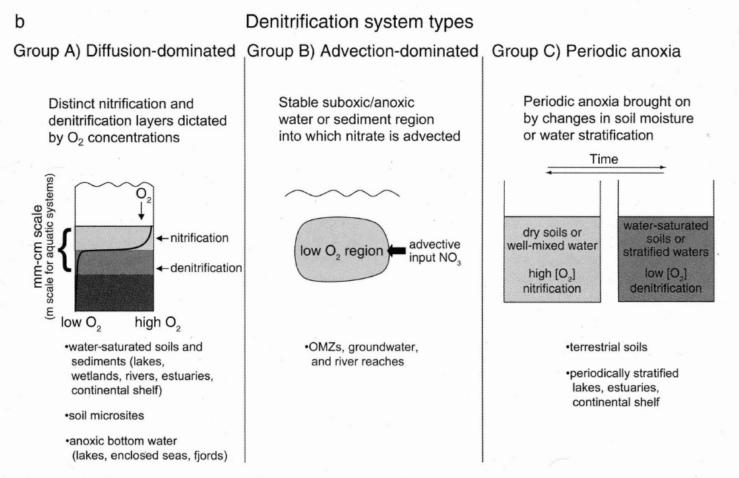
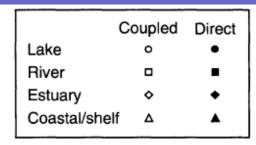
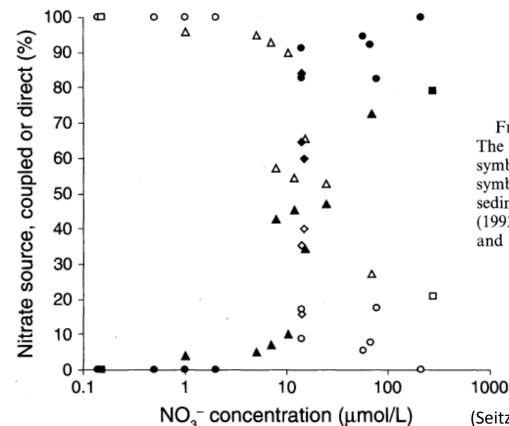
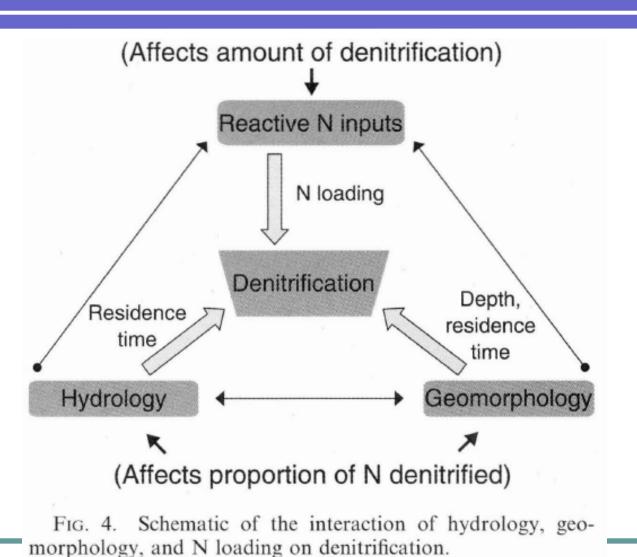
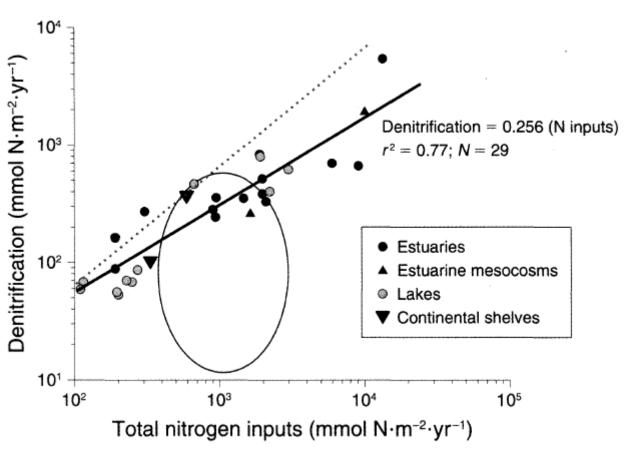



Fig. 2. (a) Classification of systems according to the magnitude of temporal and spatial separation between nitrification and enitrification. Diffusion-dominated systems are indicated in gray, advection-dominated systems are indicated with heavy outlines, and systems with periodic anoxia are indicated by dashed lines. (b) Schematic groupings of systems according to mechanism of trate delivery to denitrification zone. Vertical profiles of oxygen concentrations are indicated.

(Seitzinger et al. (2006): Ecological Applications, 16: 2064-2090)

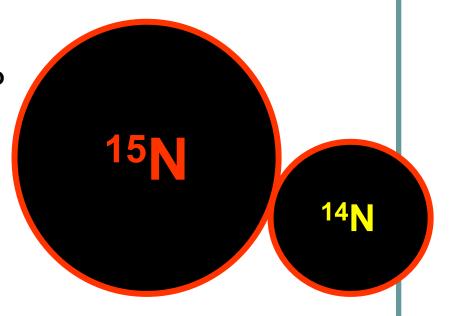

Fig. 3. Source of nitrate for denitrification in sediments. The percentage of nitrate from overlying water (direct, solid symbols) and from coupled nitrification/denitrification (open symbols) from lake, river, estuary, coastal, and continental shelf sediments is shown. Data sources: Devol and Christensen (1993), Rysgaard et al. (1995), Laursen and Seitzinger (2001), and Steingruber et al. (2001).

(Seitzinger et al. (2006): Ecological Applications, 16: 2064-2090)

(Seitzinger et al. (2006): Ecological Applications, 16: 2064-2090)

Desnitrification y entradas de N

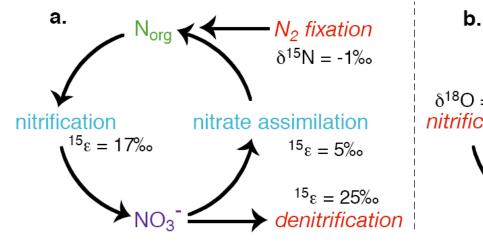
Identificación por fraccionamiento isotópico


La reacción de desnitrificación muestra un fraccionamiento en la composición isotópica (15N/14N): se prefiere el isótopo ligero en la reacción mientras que el pesado se concentra en el sustrato.

$\delta^{15}N$ de NO_3^- , NO, N_2O y N_2

$$\delta^{15}$$
N = $\left[\left(\frac{R_{\text{SAMPLE}}}{R_{\text{STANDARD}}} \right) - 1 \right] \times 1,000$

 R_{sample} is the ¹⁵N: ¹⁴N ratio in the sample


 R_{standard} is the ¹⁵N: ¹⁴N ratio in atmospheric N₂ ($R_{\text{standard}} = 0.0036765$)

Identificación por fraccionamiento isotópico

Trazador biogeoquímico:

Combinando $\delta^{15}N$ con $\delta^{18}O$ en el NO_3^- es posible identificar las principales vías de transformación y las tasas (aunque no siempre es válido)

$$\delta^{18}O = 0\%$$

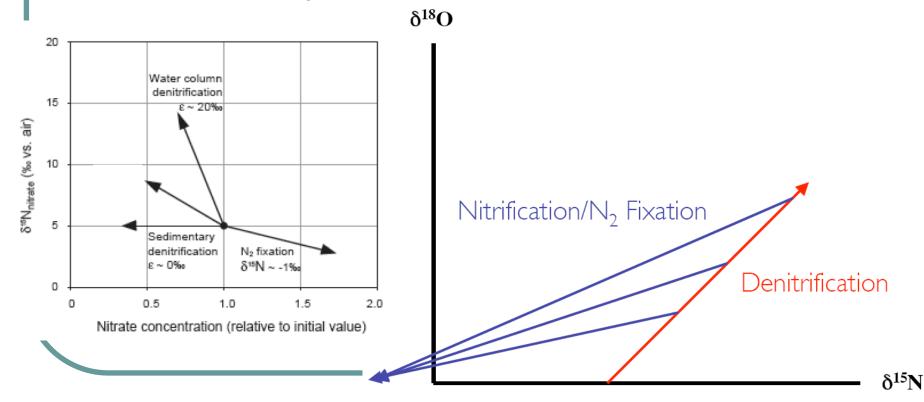
$$nitrification$$

$$18_{\varepsilon} = ^{15}_{\varepsilon}$$

$$nitrate \ assimilation$$

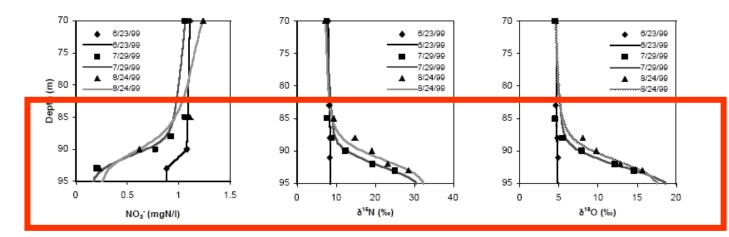
$$18_{\varepsilon} = ^{15}_{\varepsilon}$$

$$18_{\varepsilon} = ^{15}_{\varepsilon}$$

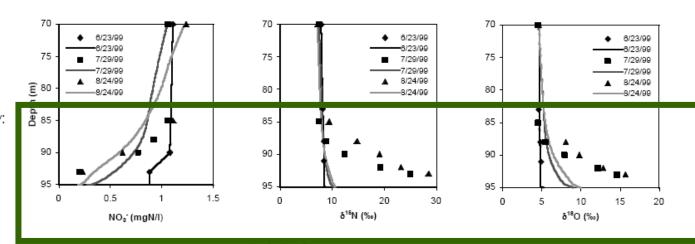

$$denitrification$$

Fracción molar isotópica
$$\epsilon = \frac{{}^{15}N}{{}^{15}N + {}^{14}N} = \frac{\left(\frac{\delta^{15}N}{1,000} + 1\right) \times 0.0036765}{1 + \left(\frac{\delta^{15}N}{1,000} + 1\right) \times 0.0036765}$$

Identificación por fraccionamiento isotópico


Trazador biogeoquímico:

Combinando δ^{15} N con δ^{18} O en el NO_3^- es posible identificar las principales vías de transformación y las tasas (aunque no siempre es válido)



Denitrification in a eutrophic lake

Water column denitrification:

Benthic denitrification only:

- ε variable?
- $\varepsilon_{18}/\varepsilon_{15}\approx0.5$

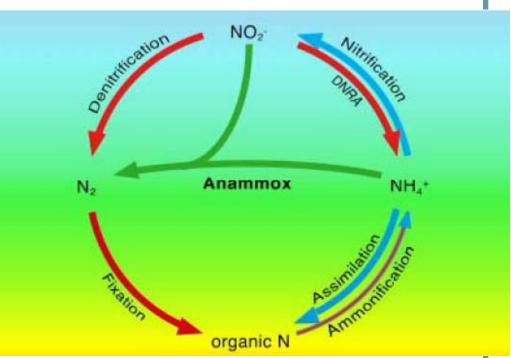
Otras transformaciones del N a bajas concentraciones de oxígeno

DNRA

- 1) Reducción directa de nitrato a amonio: DNRA (reducción desasimiladora de nitrato a amonio). Es realizada también por organismos con el gen nrf.
- 2) El amonio es una forma más disponible biológicamente y menos móvil pero también más dañino que el nitrato en el ambiente.
- 3) Una vía del DNRA es realizada por quimiolitoautótrofos que acoplan la reducción del nitrato con la oxidación de formas reducidas de azufre (H₂S). Se ha visto que a altas concentraciones de S²⁻ se inhibe la desnitrificación y se favorece la DNRA
- 4) Otra vía del DNRA usa la fermentación para acoplar el flujo de electrones de la materia orgánica a la reducción de nitrato. Este proceso se piensa que está favorecido cuando la concentración de nitrato es baja y la cantidad de carbono orgánico alta.

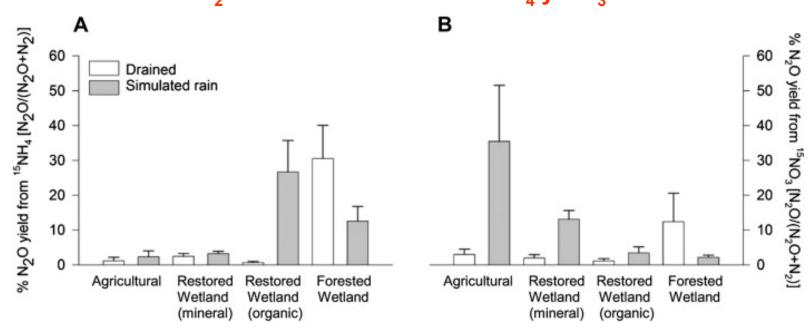
¡Mucha incertidumbre aún sobre la dinámica del proceso!

ANAMMOX


1) Oxidación anaerobica del amonio: En el proceso, nitrito y amonio se convierten en N₂ (gas).

$$NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O.$$

- 2) Las bacterias que realizan el proceso ANAMMOX pertenecen al orden <u>Planctomycetes</u> y corresponden a los géneros <u>Brocadia</u>, <u>Kuenenia</u>, <u>Jettenia</u>, <u>Anammoxoglobus</u> (todos de agua dulce), y <u>Scalindua</u> (marinos).
- 3) Mn (IV y II) como catalizador a pH=7 termodinámicamente estable
- 4) Controversia: Denitrification vs anammox como vía principal de pérdida de N₂ en aguas con oxígeno agotado


ANAMMOX

- 1) Difícil de separar de desnitrificación usando fraccionamiento isotópico
- 2) Usando la expresión de los genes se ha conseguido ver su tasa comparada con la desnitrificación tanto en ambiente marino como en lagos templados
- 3) El dominio de uno u otro proceso parece controlado por la abundancia de las bacterias encargadas de cada transformación (estacional?)

Identificación por fraccionamiento isotópico mediante sustratos enriquecidos

Emision de N₂O en humedales desde NH₄ y NO₃ usando δ¹⁵N

Organic Matter

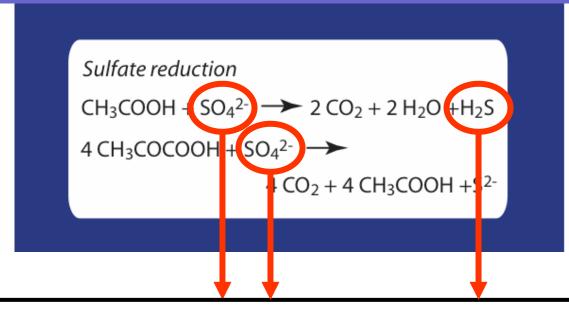
proteins 50% C, 80% N (soluble/structural) polysaccharides 20-30% C, 10% N (soluble/structural) nucleaic acids 10% C, 5% N. 50% P lipids 10% C, few % N

oxic degradation nitrate reduction

soluble constituents CO₂, NO₃⁻, HPO₃⁻

proteins (structural), peptides polysaccharides (structural), oligosaccharides, sugars, nucleic acids, lipids

extracellular hydrolysis fermentation

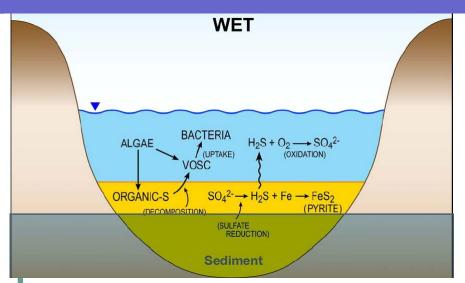

 CO_2 , NH_3 , HPO_3^- , H_2

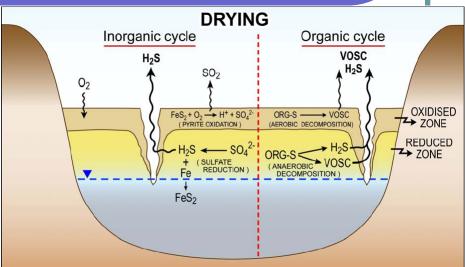
volatile fatty acids

sulfate reduction metanogenesis

CO2, CH4, NH3, HPO3 -, H2S

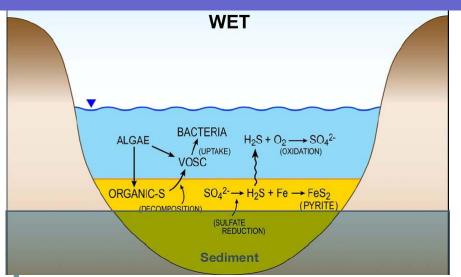
- 1. Es una reducción desasimiladora en sustratos anaeróbicos similar a la desnitrificación
- 2. SO₄²⁻ actúa como un receptor de e⁻ alternativo durante la oxidación de la materia orgánica
- 3. Bacterias reductoras de sulfato: *Desulfovibrio* y *Desulfotomaculum*
- 4. Principal fuente biogénica de H₂S a la atmósfera hasta industrialización

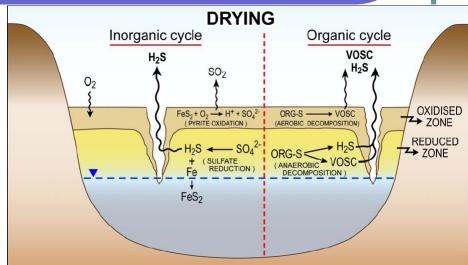

$$H_2S + Fe^{2+} \rightarrow FeS + 2H^+$$


FeS +
$$H_2S \rightarrow FeS_2 + 2H^+ + 2e^-$$

5. Liberación de H₂S a la atmósfera desde el suelo <<< tasa de reducción de sulfatos → H₂S reacciona con otros constituyentes del suelo (e.g. Fe²+):</p>

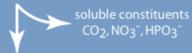
$$H_2S + Fe^{2+} \rightarrow FeS + 2H^+ \rightarrow FeS + H_2S \rightarrow FeS_2 + 2H^+ + 2e^-$$


- 6. Liberación de H₂S limitada por contenido Fe
- 7. Sulfuros de Fe => trampa efectiva para H_2S



- 8. Cuando baja el nivel de agua:
 - -Reoxidación de FeS y FeS₂ (bacterias especializadas)
 - -Liberación de SO₄²⁻ y difusión hacia zona de reducción de sulfatos
 - -Vuelta a empezar...

RECICLADO DE AZUFRE


- 9. Otras formas de inmovilización del sulfhídrico:
 - -Reacción con mat. Org. → Asociación C-S
 - a) En restos de plantas
 - b) Asociaciones H₂S + Mat. Orgánica
 - c) Inmobilización microbiana de SO₄²⁻

Forma más común de acumulación en humedales

Organic Matter

proteins 50% C, 80% N (soluble/structural) polysaccharides 20-30% C, 10% N (soluble/structural) nucleaic acids 10% C, 5% N. 50% P lipids 10% C, few % N

oxic degradation nitrate reduction

proteins (structural), peptides polysaccharides (structural), oligosaccharides, sugars, nucleic acids, lipids

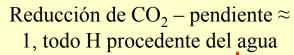
extracellular hydrolysis fermentation

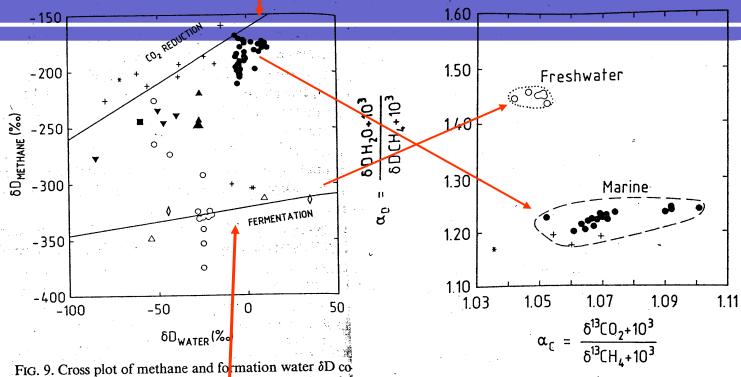
volatile fatty acids

sulfate reduction metanogenesis

 CO_2 , CH_4 , NH_3 , HPO_3^- , H_2S

Zona de reducción de sulfatos solapada con


Zona de metanogénesis

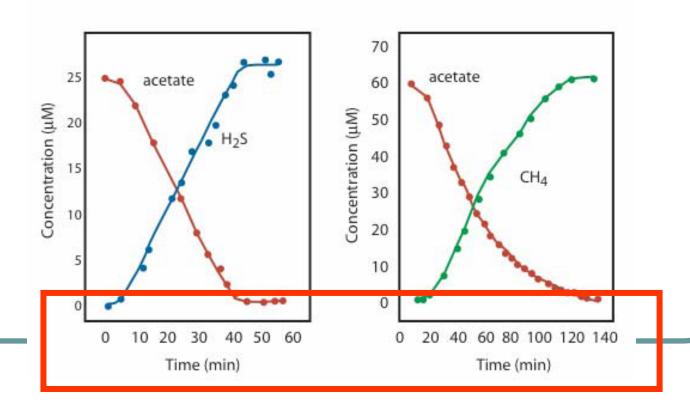

Metanogénesis

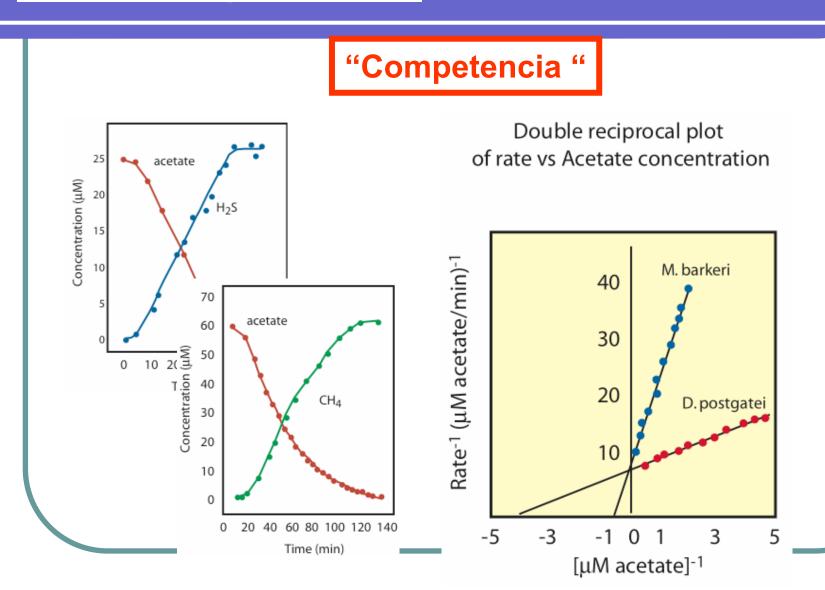
Methanogenesis

$$CH_3COOH \longrightarrow CO_2 + CH_4$$
 $CO_2 + 4H_2 \longrightarrow CH_4 + 2 H_2O$

Reacción		E _h (V)	ΔG (kcal mol ⁻¹ /e ⁻)*	
Reducción de SO ₄ ²⁻ a H ₂ S	Г	-0.221	-5.9	
Reducción de CO ₂ a CH ₄		-0.244	-5.6	
	Reducción de SO ₄ ²⁻ a H ₂ S	Reducción de SO ₄ ²⁻ a H ₂ S	Reducción de SO ₄ ²⁻ a H ₂ S -0.221	

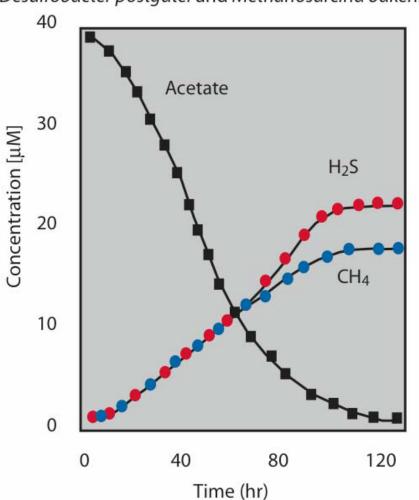
existing pairs delineating the regions of freshwater and marine sediments. The lines describing methanogenesis by CO₂ re Fig. 10. Combination of carbon and hydrogen isotope


Fermentación – Pendiente inferior, 1 de 4 H del agua


duction (Eqn. 6) and acetate fermentation (Eqn. 7) are shown ractionations (α_C and α_D) for methane, carbon dioxide and formation water. The regions of CO2 reduction and acetate fermentation are clearly differentiated using the coexisting CO₂-CH₄ and H₂O-CH₄ pairs.

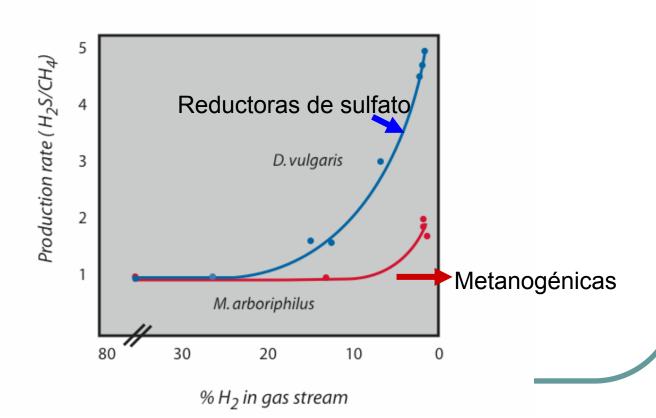
- En aguas continentales dominada por fermentación de acetato
- En aguas marinas (libres de sulfato) dominada por reducción de CO₂

"Competencia"


Consumption of acetate by sulfate reducing and methanogenic bacteria

"Competencia "

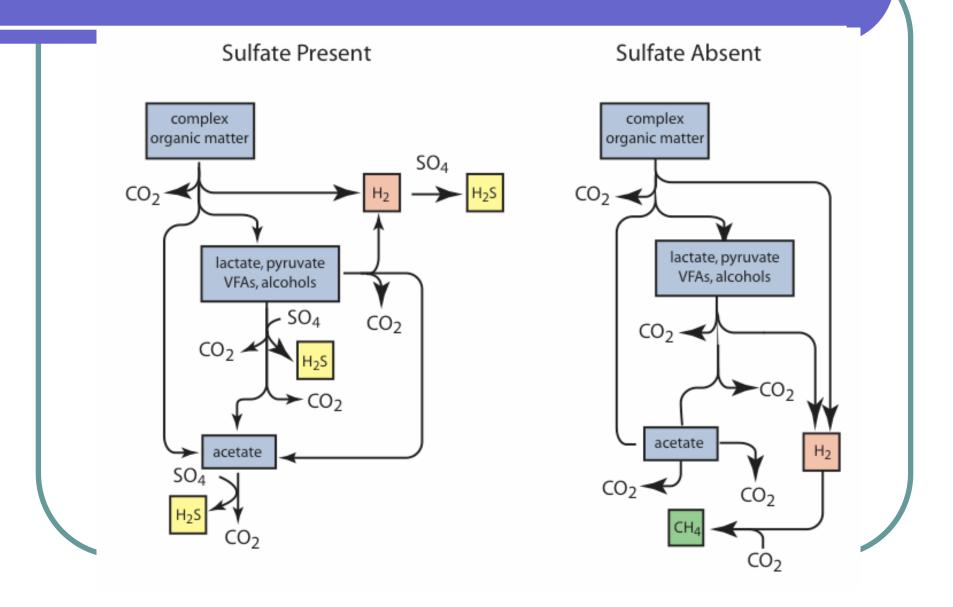
Competition for acetate between Desulfobacter postgatei and Methanosarcina bakerii



"Competencia"

Bacterias reductoras de sulfato son competidoras más efectivas por los mismos compuestos (acetato) que las metanogénicas

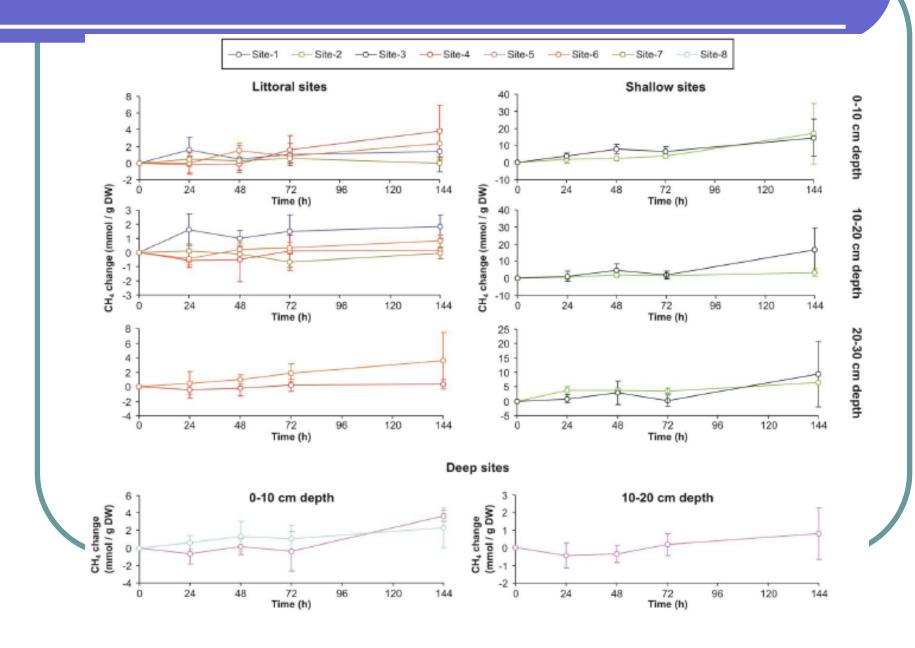
"Competencia "

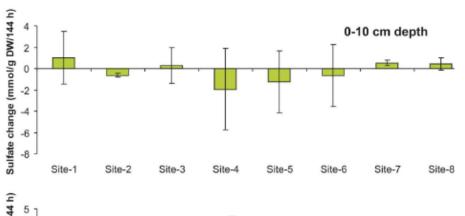

Competition for hydrogen between sulfate reducing and methanogenic bacteria

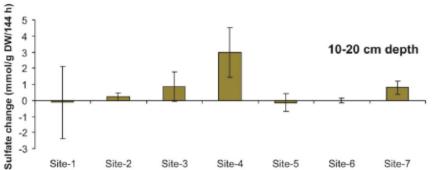
"Competencia"

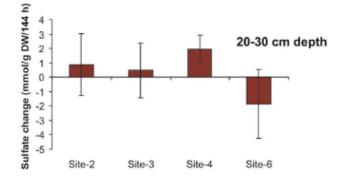
Bacterias reductoras de sulfato son competidoras más eficientes en el uso de H₂ como dador de e- que las metanogénicas que participan en la <u>reducción de CO₂</u>

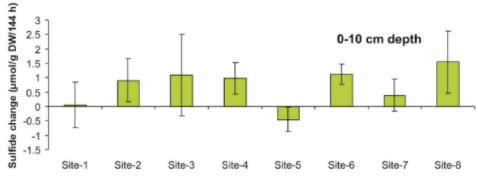
$$CO_2 + 4H_2$$
 \longrightarrow $CH_4 + 2H_2O$

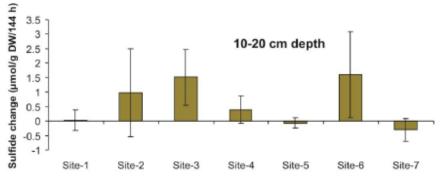


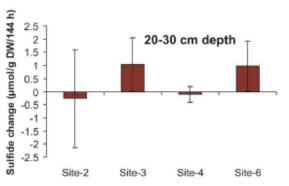

"Competencia"

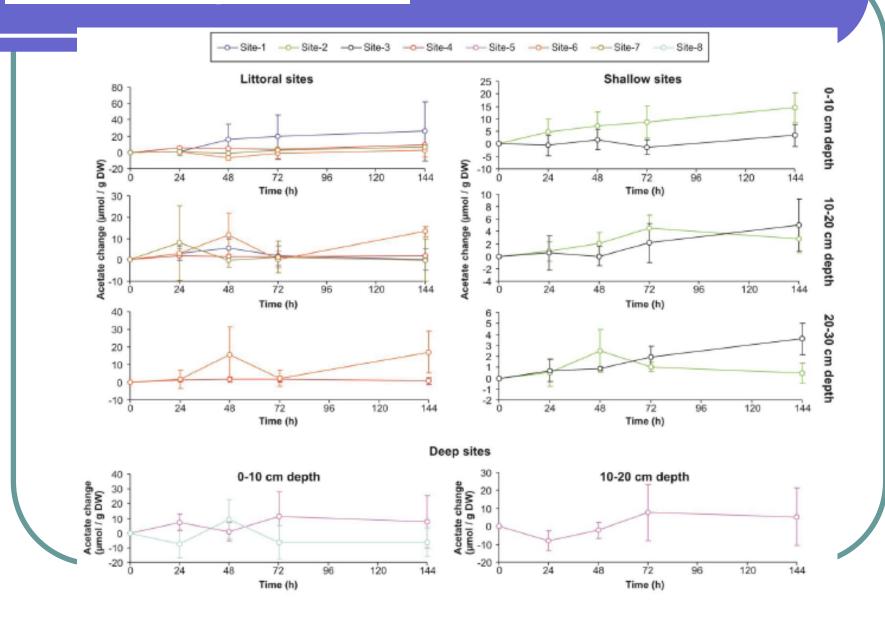

No hay solapamiento entre metanogénesis y reducción de sulfatos:

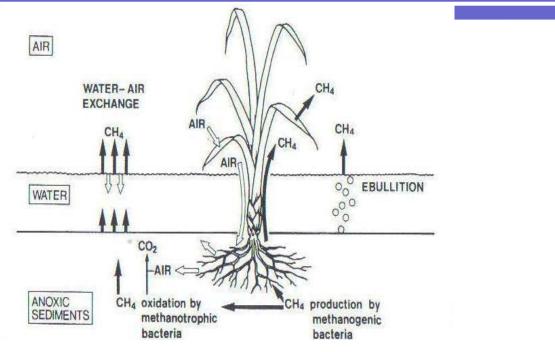

Metanogénesis empieza cuando sulfatos son agotados en el medio


Presencia de sulfatos en el sustrato inhibe metanogénesis







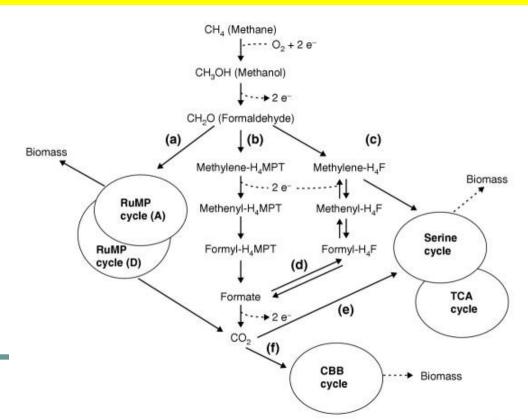


Metanogénesis

Table 4.4. Relationships (Spearman Rank Correlations; r values) between sulfate and hydrogen sulfide concentrations and CH₄, acetate, H_2S , Fe^{2+} and Fe^{3+} concentrations at 144 hours. (Marked correlations are significant at p < 0.05).

	Sulfate	H ₂ S
CH ₄	-0.088	
Acetate	0.617	
H ₂ S Fe ²⁺	-0.463	
Fe ²⁺	0.333	0.473
Fe ³⁺	-0.020	-0.04

Balance de CH₄:


- -Producción de CH₄ en zonas profundas del suelo (anoxia)
- -Oxidación aeróbica de CH₄ por bacterias metanotróficas
- -Oxidación anaeróbica de CH₄ por consorcio sulfatoreductoras + metanotróficas (nitrito como aceptor)
- -Difusión de CH₄ hasta la superficie

"Oxidación aeróbica de CH4 "

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

En aguas continentales:

Puede reducir de 80-90% las emisiones de CH₄ Responsable del 25% de emisiones de CO₂

"Oxidación anaeróbica de CH₄ " (Metanogénesis inversa)

 $CH_4 + SO_4^{2-} \rightarrow HS^- + HCO_3^- + H_2O$ Consorcio Arqueas y bact. sulfatorreductoras

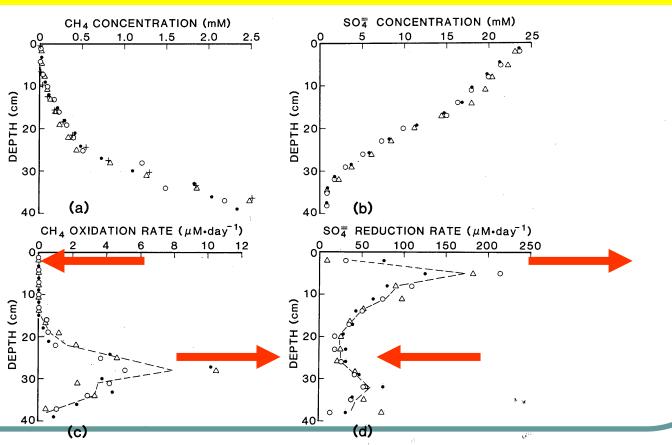
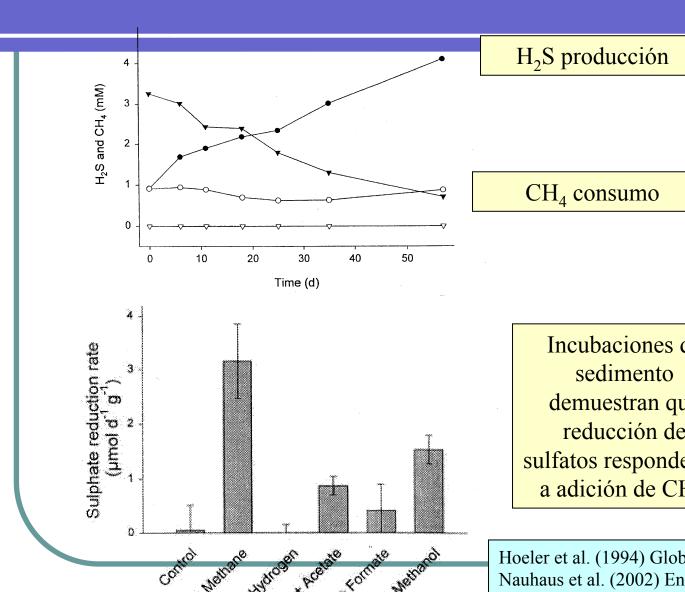
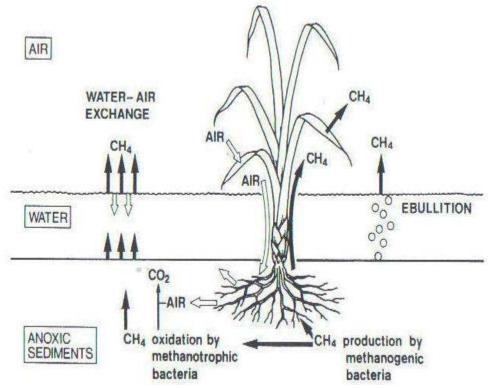



FIG. 2. Depth distributions in Skan Bay sediments. (a) Methane; (b) sulfate; (c) methane oxidation rate; (d) sulfate reduction rate. \bullet , \bigcirc , and \triangle represent triplicate subcores from the same box core on which both concentration and rate measurements were performed. In panel a, + is the average methane concentration from three subcores analyzed with a headspace technique. The dashed lines in panels c and d are through the mean of observations at a given depth.

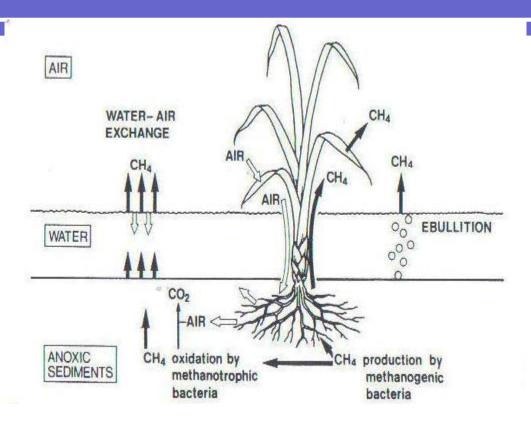
"Oxidación anaeróbica de CH₄

Incubaciones de demuestran que reducción de sulfatos responde (+) a adición de CH₄.


Hoeler et al. (1994) Global Biogeoch Cycles 8:451-463 Nauhaus et al. (2002) Environmental Microbiology 4:296-305

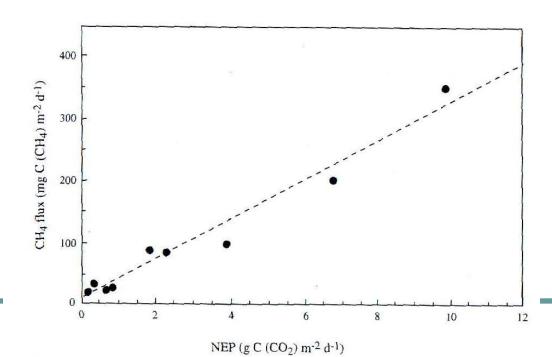
"Oxidación anaeróbica de CH₄ " (Metanogénesis inversa)

En aguas continentales:


Poco estudiado aunque hay indicios de que coexiste metanogénesis y metanogénesis inversa en la columna de agua (se han observado arqueas en pool microbiano pero no el proceso)

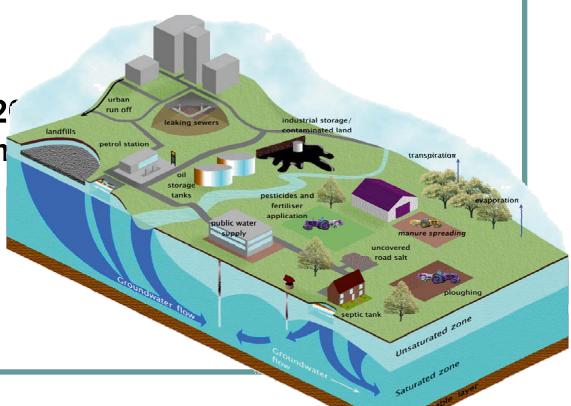
Se ha observado que la oxidación de CH₄ en condiciones anaeróbicas se acopla con la desnitrificación (usa nitrito como aceptor de e⁻) (Raghoebarsing et al. (2006) Nature 440:918-921)

Balance de CH₄:

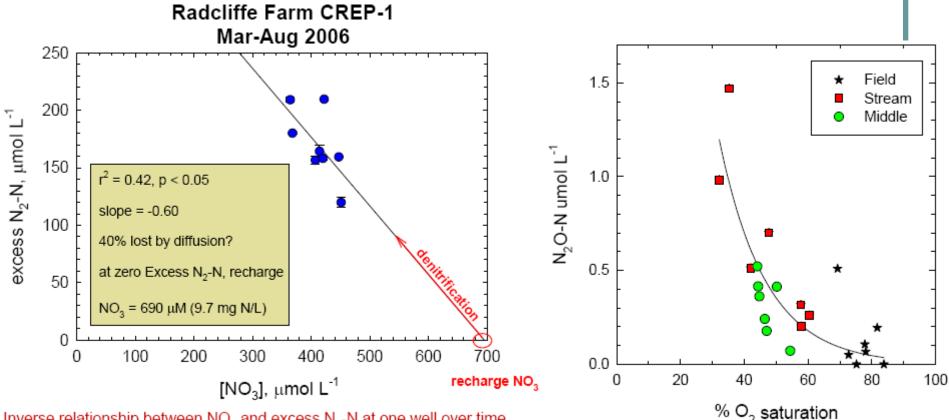

- -Competencia por O₂ de metanotróficas con bacterias nitrificantes si ↑↑↑[CH₄]
- -Ebullición: burbujas por sobresaturación en gases
- -Transporte por vegetación: en especies con tallos huecos

GRAN HETEROGENEIDAD ESPACIAL POR DIFERENCIAS EN PROPIEDADES Y CONDICIONES AMBIENTALES EN SUELO Y SEDIMENTOS

Condicionantes básicos de emisiones de CH₄:


- <mark>1)</mark> ↑Nivel freático o inundación → ↑CH₄
- 2) ↑ Temperatura del suelo → ↑CH₄
- 3) \uparrow NEP \rightarrow \uparrow CH₄
- <mark>4)</mark> ↑ Materia orgánica lábil → ↑CH₄
- 5) ↓ SO₄²⁻

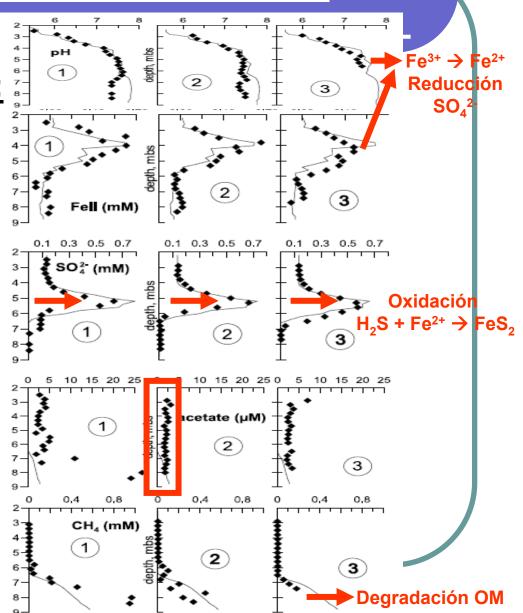
Transformaciones en aguas subterráneas


Principales procesos biogeoquímicos:

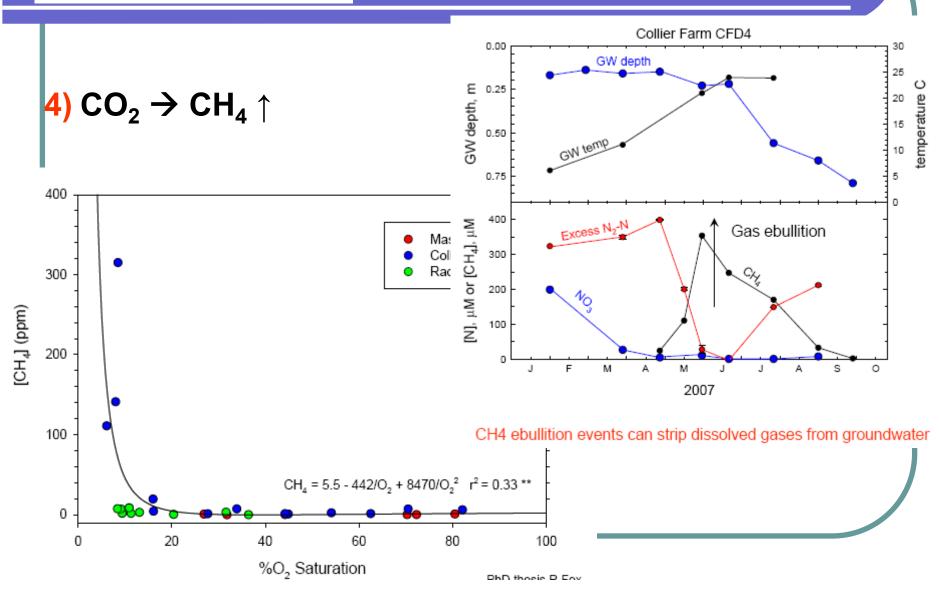
- 1) Desnitrificación (bacterias hasta 300 m de prof.)
- **2)** DRNA?
- 3) Anammox
- 4) $Fe^{3+} \rightarrow Fe^{2+}$
- 5) SO₄²⁻ → H₂S ↑ (más 2)
- 6) $CO_2 \rightarrow CH_4 \uparrow (> 100 \text{ n})$

Transformaciones en aguas subterráneas

1) Desnitrificación → ↓Eh + ↑↑[NO₃-] → N₂O a atmósfera



Inverse relationship between NO_3 and excess N_2 -N at one well over time suggests that variations in NO_3 are caused by denitrification and that diffusive losses of excess N2 to groundwater may occur.


Transf. en aguas subterráneas

En condiciones reductoras:

- 2) $Fe^{3+} \rightarrow Fe^{2+}$
- 3) $SO_4^{2-} \rightarrow H_2S \uparrow$

Transformaciones en aguas subterráneas

