IMEDEA Calendar
 
WhenWhatWhere
Jue 7th Mar
3:45 pm
5:00 pm
Sala de seminarios, Esporles
Add event to google
Show in Google map
Vie 8th Mar
4:00 pm
4:30 pm



Abstract



Warming can have dramatic effects on plant phenology and reproduction, with important consequences for reproductive output, plant survivorship, or species dispersal. In seagrasses, vegetative growth through clonal expansion is generally the dominant strategy for meadow maintenance, expansion and recovery, with sexual reproduction strongly differing amongst species, being rare for some, and some times associated with disturbance. Even rarer is the occurrence of pseudovivipary, an uncommon phenomenon in the plant realm, which has only been reported twice before in the marine environment as highly localized phenomena associated with environmental stress. Pseudovivipary is an asexual reproduction strategy whereby plantlets replace sexual reproductive structures, leading to the maintenance of the maternal clones. In summer of 2022, the Mediterranean Sea underwent unprecedented warming, and, associated with it, we observed extensive flowering (100% of sites) as well as pseudovivipary across numerous (>85 % of 36 sites) Posidonia oceanica meadows along the Balearic Islands. Our results support the notion that P. oceanica flowering is triggered under high warming but also, and importantly, this is the first time ever that pseudovivipary is reported across so many locations in a marine plant, and the fate of these plantlets is being monitored by assessing development, survivorship and dispersal through time. Considering the negative impacts that warming can have on seagrass ecosystems, the discovery of widespread pseudovivipary is a critical aspect to consider for understanding mechanisms of resilience in seagrasses.


Sala de Seminarios del IMEDEA, Esporles
Add event to google
Show in Google map
Lun 11th Mar
9:00 am
to Mié 13th Mar
3:00 pm

The threat and occurrence of high-magnitude, uncontrolled induced seismicity has been a persisting issue in several kinds of subsurface systems for decades now. Research on limiting induced seismicity to improve the safety of these systems began ever since the first observed cases in wastewater injection. The number of groups working to solve this problem only increased with every major event, focusing on various aspects of induced seismicity. Our understanding of the underlying processes has improved consistently, but the recent events at Pohang, Castor, Groningen, etc., have showcased that there is more to learn in terms of the physics, and demand better characterization, monitoring and forecasting systems in place.



 



This Workshop aims at fostering debate on the latest advances in process understanding, subsurface characterization and forecasting of induced seismicity. We welcome contributions from the academia and industry alike in topics ranging from, but not limited to numerical modeling, laboratory experiments, field studies, application of AI in induced seismicity, etc. We welcome contributions in the form of both posters and oral presentations that broadly fit into the following sessions:



 



Session 1: Understanding of the causes of induced seismicity



Session 2: Post-injection seismicity: can we forecast it?



Session 3: Subsurface characterization



Session 4: Forecasting induced seismicity



Session 5: Case Studies of induced seismicity



 



Confirmed invited speakers




  • Gillian Foulger (Durham University)

  • Peter Meier (GeoEnergie Suisse)

  • Serge Shapiro (Freie Universität Berlin)

  • Leo Eisner (Seismik)

  • Jesús Carrera (CSIC)

  • Ioannis Stefanou (Nantes University)

  • Marie Violay (EPFL)

  • Keita Yoshioka (Montanuniversität Leoben)

  • Grzegorz Kwiatek (GFZ)

  • Yusuke Mukuhira (Tohoku University)

  • Luis Cueto-Felgueroso (Technical University of Madrid)

  • Qinghua Lei (Uppsala University)

  • Silvia De Simone (CSIC)

  • Mateo Acosta (CalTech)

  • Alexis Sáez (EPFL)

  • Jean Schmittbuhl (Strasbourg University)

  • Sarah Weihmann (RWTH Aachen University)

  • James Verdon (University of Bristol)



 



Closing of the registration: 29th of February 2024



Registration here



 



 


Ca n'Oleo Palma
Add event to google
Show in Google map
Mar 12th Mar
10:00 am
11:00 am



TREC: a scientific voyage to address environmental challenges



Dr Kiley West Seitz - EMBL



TREC (TRaversing European Coastlines) is the European Molecular Biological Laboratory’s flagship Scientific expedition to study coastal ecosystems at molecular level. The expedition studies coastal regions which are known for their extremely rich biodiversity and plays a critical role in the stability and sustainability of ecosystems at planetary scale. These ecosystems are drastically affected by global changes & local human impacts making the study of them critical to understanding the climate crisis. For the TREC expedition, we employ a holistic cross sectional sampling approach along the land-sea gradient using highly standardized protocols. This systematic approach allows us to study the coastal ecosystems at the molecular level across pollution gradients, organismal scales, life complexity and time scales. 



The TREC expedition started in April 2023 and is expected to last until end of July 2024. During that time, the researchers will be gathering biological samples and environmental data along the European coastline at more than 120 land-sea transects. Mallorca is one of the sampling sites of the expedition, and IMEDEA is hosting and supporting the TREC team during their campaign on the island.



As part of this seminar you will learn about the project and you will visit the traveling labs parked at IMEDEA.



 


Sala de Seminarios, IMEDEA
Add event to google
Show in Google map
Jue 14th Mar

One of the main challenging problems in evolutionary molecular biology is understanding the mechanisms that led to the emergence of chemical digital coding from inanimate matter. While recent advances, such as the identification of fougerite as a putative coding material have been made, there are currently no reasonable theoretical models describing this transition.



The primary objective of this interdisciplinary workshop is to bring together scientists from the fields of physics, mathematics, biology, and computer sciences to address two key questions central to the present COST action:





  • The possible characterization of living matter (encoding matter) versus inanimate (non-encoding) matter in terms of their ability to carry an adequate program compatible with life written in a realistic language.




  • Exploration of the specific role of dynamics in encoding matter and possible phase transitions between non-encoding and encoding states of matter at the origin of life.





The Workshop will contribute to the integration of Dynamical System concepts on the interrelation between coding and decoding along the flux of biological information and related aspects on the theories of the origin of life.  Moreover, will favor the development and exchange of knowhow, integration, training, and promotion of specific collaborations in the modelling of genomic information. The anticipated outcome of this activity will serve as an integrative synthesis, interweaving the research threads developed in the Bolzano and Porto Conferences and Workshops. In doing so, it will consolidate the findings related to the application of the dynamical systems approach in understanding the fundamentals of the flow of genetic information.



The spirit of DYCOMAT is to actively promote collaboration among its participants. In this regard, the organization intends not to be a mere sequence of informative talks but mainly to foster effective collaborative working tables to address the specific objectives of DYNALIFE.


Edificio de Sa Riera, UIB
Add event to google
Show in Google map
Vie 15th Mar
4:00 pm
4:30 pm



Asbtract



Innovación a través de Datos: Bienvenida al Data Lab" tiene como objetivo presentar el Data Lab del IMEDEA, un nuevo servicio diseñado para apoyar a nuestros equipos de investigación mediante el análisis avanzado de datos y la Inteligencia Artificial. En esta sesión, exploraremos las motivaciones detrás de la creación del Data Lab, detallaremos los servicios y prestaciones que ofrece, y compartiremos ejemplos concretos de proyectos en los que el Data Lab ya está marcando una diferencia significativa. Además, proporcionaremos información sobre cómo los investigadores pueden acceder a estos recursos y colaborar con nosotros para potenciar sus investigaciones.



 



Link to the video here


Sala de Seminarios del IMEDEA, Esporles
Add event to google
Show in Google map
Vie 22nd Mar
4:00 pm
4:30 pm



Abstract



Marine macrophyte ecosystems are considered as a fundamental habitat throughout the world. However, these communities are seriously threatened by the continuous increase in anthropogenic activities and are highly vulnerable to the pressures derived from global change.



This has led to an increased interest in restoration, and in assessing different factors that may promote their recovery and resilience. In seagrasses, firsts life stages (seeds and seedlings) can be critical when determining the natural recovery of the ecosystem. In this sense, identifying the factors that positively influence the development and establishment of these early stages, particularly considering future stressors, is essential for ecosystem conservation and restoration. The study of microbiome can be a determining factor to understand the functionality and resilience of marine ecosystems. Although the study of seagrass microbiomes is still in its early stages, the beneficial effect of microorganisms has already been described in terrestrial plants, so this study aims to evaluate the influence of microbiome on germination and development of C. nodosa seeds.



 



To test the hypothesis that the presence of certain microorganisms influences the development of seagrass, a manipulative factorial experiment was carried out in the laboratory using C. nodosa seeds. Six treatments from the interaction between two factors were examined: (1) sterilization (or not) of the seeds and (2) sediment type (sediment from vegetated environments, sediment from non-vegetated environments or artificial sediment). Germination success was strongly influenced by the presence of the seed microbiome, and sediment type (and thus soil microbiome) also influenced germination and seed development. These results are important to understand natural drivers of seagrass germination success and to consider for restoration techniques.


Sala de Seminarios del IMEDEA, Esporles
Add event to google
Show in Google map
Mar 9th Abr
2:00 pm
4:00 pm
Curso Base Programacion
Sala reuniones 3
Add event to google
Show in Google map
Jue 11th Abr
2:00 pm
4:00 pm
Curso Base Programacion
Sala reuniones 3
Add event to google
Show in Google map
Vie 12th Abr
11:30 am
12:00 pm



Asbtract



Geothermal energy is the cleanest and the most reliable source of renewable energy when compared to other options like solar or wind. From lighting up 5 bulbs in Italy in 1904, electricity generation from geothermal energy sources has come a long way to a total capacity of 16,355 MW (0.5% of total) by the end of 2023, most of which coming from hydrothermal reservoirs. In order to accelerate the scaling of electricity generation, Enhanced Geothermal Systems (EGS) in non-volcanic areas need to be developed. Creating these EGS requires enhancing the permeability of natural fractures through a process called hydraulic stimulation. A natural outcome of this process is microseismicity (usually Mw<2), but in a few occasions, there have been earthquakes of greater magnitude (e.g., Mw 3.4 and Mw 5.5 at Basel (Switzerland) and Pohang (Korea Republic), respectively) which were very disturbing and ended up with project cancellation. Hydraulic stimulation operations are usually designed making use of a scaling law which states that the maximum magnitude of induced earthquakes is linearly proportional to the total volume of water injected into the system. Our numerical studies on hydraulic stimulation in EGS show that the injection protocol has a stronger contribution to the maximum magnitude earthquake over the total volume of injected water.



 


Sala de Seminarios del IMEDEA, Esporles
Add event to google
Show in Google map
Lun 15th Abr
to Lun 22nd Abr

PREREGISTRO al Curso de Buceo Científico 2024 abierto:



Se anuncia que el preregistro al curso de buceo científico 2024 está abierto a partir del 05 de marzo hasta el 13 de marzo.



Enlace al formulario de registro: forms.gle/ZtphhHJAnsFqXJS89



Fechas del curso: 15 al 23 de Abril (excluyendo el fin de semana)

Tasa de registro / precio del curso: 350€

Número de plazas: 18 (se seleccionarán los candidatos con mejores criterios, serán informados via mail después del cierre del preregistro, hasta el 18 de marzo.)



Preguntas a: lwels@imedea.uib-csic.es o 971611716



 


IMEDEA y Puerto de Pollença
Add event to google
Show in Google map
Dom 21st Abr
5:00 pm
6:00 pm

Cuenta cuentos científico para peques: Celebramos Sant Jordi en la Biblioteca Municipal de Esporles




El lunes 22 a las 17 h, en colaboración con la biblioteca municipal de Esporles, realizaremos la lectura del cuento infantil "Posidonia, la dama de la mar", de Harold Jimenez Canizales. Este precioso libro ilustrado combina la fantasía literaria con los principios científicos de la conservación marina, transportando a los más pequeños a un viaje único en el que la complejidad de los impactos que afectan a la Posidonia oceanica, la curiosidad y el aprendizaje se entrelazan de manera positiva y encantadora. 

Al finalizar la lectura ¡continua la acción! Como ya es costumbre en la biblioteca, los más peques podrán desarrollar sus destrezas artísticas en el taller de manualidades relacionado con el cuento. 




Lunes 22 de abril

17:00 H

Biblioteca Municipal d'Esporles, C/ de Ramon Llull, 3. Esporles (web)

Actividad gratuita




Biblioteca Municipal d'Esporles, C/ de Ramon Llull, 3. Esporles
Add event to google
Show in Google map
Lun 22nd Abr
2:00 pm
4:00 pm
Curso Base Programacion
Sala reuniones 3
Add event to google
Show in Google map
Jue 25th Abr
2:00 pm
4:00 pm
Curso Base Programacion
Sala reuniones 3
Add event to google
Show in Google map
Vie 26th Abr
12:00 pm
12:30 pm



Abstract



The generation and propagation of waves towards the coastal regions during storm events can substantially increase coastal hazards associated with extreme sea levels. While the Mediterranean Sea is characterized by a fetch-limited environment, the progression of extra-tropical cyclones over its surface often engenders powerful waves. As climate numerical models consistently converge towards a global warming climate over the past few decades, the present wave climate is expected to undergo alterations. However, the reliability of the model projections differ among climate variables, exhibiting for instance higher confidence in the temperature than in precipitation variables. This study investigates future changes in the wave climate across the Mediterranean region using an extensive ensemble of wave numerical simulations.



These simulations were forced with wind fields from thirty-one GCM-RCMs (general circulation - regional climate models) of the European Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX), integrating WaveWatch III and SCHISM numerical models. Future changes in the mean and intense (quantile 0.95) wave climate of significant wave height (Hs), peak wave period (Tp), peak wave direction (Dp) are assessed. Furthermore, we evaluate changes in 100-year return levels of Hs toward the end of the century. Extreme events from each GCM-RCM are aggregated into a single coherent distribution, following a bias correction procedure assuming the Cumulative Distribution Function (CDF) of extreme events to adhere to either a parametric Gumbel or Generalized Extreme Value (GEV) CDF, individually for each model. Return levels are then computed by fitting a GEV distribution to the unified distribution for both historical and future periods.



Our findings reveal an intensification of extreme waves towards the end of the century in several areas of the Mediterranean basin. Despite limitations inherent to bias-correction methods and return level computation, our study underscores the contrasting outcomes between analyzing the entire statistical distribution versus focusing solely on the tail, emphasizing the importance of considering both aspects in wave climate projections.



 

Sala de Seminarios del IMEDEA, Esporles
Add event to google
Show in Google map
Mar 30th Abr
10:30 am
1:30 pm

Entrega de premios de los proyectos ganadores del certamen "Ocean Odyssey Challenge” del proyecto Ocean Night. 


IMEDEA
Add event to google
Show in Google map
Jue 2nd May
10:00 am
11:00 am
Sala de seminarios IMEDEA
Add event to google
Show in Google map
Vie 3rd May
12:00 pm
1:00 pm



Abstract



Sunlight drives virtually all life on the Earth’s surface, with about 50% of primary productivity occurring in marine systems. Yet, this traditional view of phototrophy changed radically with the discovery of marine bacterial rhodopsins (i.e., proteorhodopsins; PR), over twenty years ago. PRs are simple light-driven proton pumps present in over 80% of surface bacterioplankton, which allow them to transform light into biochemical energy.



Combining culture-based physiology studies with (meta)-genomics, (meta)-transcriptomics, and environmental quantifications we are just starting to understand the role that PR-based photoheterotrophy plays in the ocean. In this presentation, I will discuss the knowns and unknowns of PR-phototrophy and what we are starting to learn from looking at its natural distributions in different oceanographic basins, ranging from extreme ultraoligotrophic regions to high productivity environments


Sala de seminarios IMEDEA
Add event to google
Show in Google map
Lun 6th May
TREC Sequencing Course Mallorca

Introductory course to Next Generation Sequencing tecniques organized within the Maria de Maeztu Programme in collaboration with EMBL.



Schedule



May 6th 2024 Monday                     



 



Wet lab lectures







































10:00 – 10:45



 



Session 1: Considerations for experimental design.



(Laura Villacorta – Genecore EMBL)



10:45 – 11:30



 



Session 2: Sample isolation and preparation. Applications. (Laura Villacorta – Genecore EMBL)



 



11:30 – 12:00



Coffee break (on site)



12:00 – 12:45



Session 4: Short-read sequencing.



(Laura Villacorta – Genecore EMBL)



12:45 – 13:30



Session 5: Long-read sequencing.



(Laura Villacorta – Genecore EMBL)



13:30 – 14:30



Lunch break (free time)



14:30 – 15:15



Session 3: Making of Platynereis into a Model Organism.



(Leslie Pan, Arendt’s lab, EMBL)



 



The Arendt group is interested in the evolution of central nervous system in bilateral animals. With sequencing technologies becoming more accessible, we have built extensive genomics resources that has allowed us to dive deeper into cell type evolution. Leslie will introduce different published and unpublished works from the group, and how we leveraged the different sequencing technologies.



1. Assembling the genome of a highly heterozygous worm



2. Single cell transcriptomes for cross species comparison



3. In field genotyping/sequencing for species identification



15:15 – 16:15



Session 6: Wet lab consultations.



(Laura Villacorta, Leslie Pan, Jonathan Landry)




 



 



 



May 7th 2024 Tuesday



 



Dry lab lectures



















10:00 – 11:30



 



 



Session 7: Sequencing data formats and data QC.



(Jonathan Landry – Genecore EMBL)



11:30 – 12:00



Coffee break (on site)



12:00 – 13:00 



 



Session 8: Dry lab consultations



(Jonathan Landry - Genecore EMBL)



 




 


Sala de Seminarios, IMEDEA
Add event to google
Show in Google map
Lun 6th May
2:00 pm
4:00 pm
Curso Base Programacion
Sala reuniones 3
Add event to google
Show in Google map
Mar 7th May
12:00 pm
1:00 pm
SEMINARIO JB Raina (UT Sydney) - Uncovering complex chemically mediated microbial behaviours

Abstract



The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While natural chemical hotspots produce gradients comprised of hundreds to thousands of different chemical compounds, we do not know how this chemical diversity affects the chemotactic responses of bacteria. I will present results from two studies that reveal some unexpected responses when bacteria are exposed to complex chemical mixtures. Using in situ and laboratory-based assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharide laminarin, but chemotaxis towards this large molecule is enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. Using a novel chemotaxis choice assay, we then directly expose a model marine bacterium to four potent chemoattractants simultaneously (i.e., one monosaccharide and three amino acids). Although the bacterium is strongly chemotactic to each of these molecules in isolation, when these four molecules are provided simultaneously, the cells exhibit a striking response by swimming towards only one of them. These results start shedding light on the synergistic effects (e.g., laminarin and DMSP) and sharp chemical preferences modulating the behaviours of bacteria.


Sala de Reuniones, 2ª planta, IMEDEA
Add event to google
Show in Google map
Mié 8th May
10:45 am
12:00 pm

INTERNATIONAL VISITING SCHOLAR PROGRAMME (IVSP)



Abstract



Seagrass meadows and the services they provide are declining worldwide as a result of human perturbations. Along the Swedish W coast, almost 60% of the seagrass has been lost since the 1980's, representing a loss of approximately 190 km2 of seagrass. The seagrass Zostera marina, L. (eelgrass) is the dominant macrophyte on soft bottoms along the Swedish coast. The decrease in seagrass worldwide has lead to many restoration programs but their success rate is very low due to the regime shift and feedback mechanisms that also prevent natural recovery.



This presentation aims to provide a review on the restoration successes and challenges on eelgrass in Sweden. For example, positive feedbacks generated by water turbidity due to sediment resuspension, drifting macroalga covering eelgrass transplants and the presence of eelgrass predators such as shore crabs have been identified as causes affecting restoration success. To overcome these issues, restoration techniques using sand-capping have shown to be successful to reintroduce eelgrass in areas where it was lost. An interdisciplinary approach using field and laboratory experiments linked with hydrodynamical modeling showed to be key to understand the complex coastal ecological dynamics.



In addition, new methods to monitor coastal habitats such as seagrass meadows and marine mammals (dugongs and seals) using aerial drones and machine learning will be presented. These new technologies can contribute to faster data collection and data analysis for ecological studies and to provide relevant information to coastal managers and decision makers working on ecological conservation.



Bio



Eduardo Infantes is a researcher at the University of Gothenburg in Sweden, where he leads the Seagrass Ecology Lab research group  based at Kristineberg marine station. With a focus on seagrass ecology over the last 18 years, his main interests are in 1) studying interactions between fluid dynamics and marine vegetation through field data, mesocosm experiments and flume studies, 2) restoration of coastal habitat using seagrass within the interdisciplinary ZORRO group, and 3) monitoring of seagrass beds and marine mammals (e.g. harbor seals, manatees, and dugongs) using drones and AI. With an interdisciplinary profile, he collaborates in research and management, contributing to environmental policies in coastal restoration and monitoring.


Sala de Seminarios, IMEDEA
Add event to google
Show in Google map
Jue 9th May
to Vie 10th May
Campus UIB
Add event to google
Show in Google map
Jue 9th May
2:00 pm
4:00 pm
Curso Base Programacion
Sala reuniones 3
Add event to google
Show in Google map
Vie 10th May
12:00 pm
12:30 pm



Abstract



Establishing root systems in rhizome fragments of Posidonia oceanica presents a significant challenge for its restoration. Rhizome fragments of this slow-growing seagrass require robust rooting for successful anchorage and nutrient absorption from the environment. Controlled experiments have demonstrated that the use of plant growth regulators, such as the auxins α-naphthaleneacetic acid (NAA) and indole-3-butyric acid (IBA), stimulates rooting in P. oceanica cuttings. However, this effect has not been tested in a marine environment. In this study, rhizome fragments were exposed to varying concentrations of NAA and IBA for 24 hours before transplanting into a dead matte area in the Bay of Pollensa (Mallorca, Spain). After one year, all fragments survived; however, contrary to expectations, no significant differences emerged in the growth and biomass of roots, rhizomes (orthotropic and plagiotropic), and leaves between treated and untreated fragments. This implies that applying auxins to P. oceanica rhizome fragments may not offer an advantage when rooting transplants in the marine environment. Future studies should explore how other environmental conditions can influence rooting and interactions with auxin effects over time.



 



 


Sala de Seminarios del IMEDEA
Add event to google
Show in Google map
Sáb 11th May
10:00 am
1:00 pm
IMEDEA sede de Esporles
Add event to google
Show in Google map
Lun 13th May
to Mar 14th May
Sala de seminarios
Add event to google
Show in Google map