IMEDEA Calendar
 
WhenWhatWhere
Dv 3rd maig
12:00 pm
1:00 pm



Abstract



Sunlight drives virtually all life on the Earth’s surface, with about 50% of primary productivity occurring in marine systems. Yet, this traditional view of phototrophy changed radically with the discovery of marine bacterial rhodopsins (i.e., proteorhodopsins; PR), over twenty years ago. PRs are simple light-driven proton pumps present in over 80% of surface bacterioplankton, which allow them to transform light into biochemical energy.



Combining culture-based physiology studies with (meta)-genomics, (meta)-transcriptomics, and environmental quantifications we are just starting to understand the role that PR-based photoheterotrophy plays in the ocean. In this presentation, I will discuss the knowns and unknowns of PR-phototrophy and what we are starting to learn from looking at its natural distributions in different oceanographic basins, ranging from extreme ultraoligotrophic regions to high productivity environments


Sala de seminarios IMEDEA
Add event to google
Show in Google map
Dl 6th maig
TREC Sequencing Course Mallorca

Introductory course to Next Generation Sequencing tecniques organized within the Maria de Maeztu Programme in collaboration with EMBL.



Schedule



May 6th 2024 Monday                     



 



Wet lab lectures







































10:00 – 10:45



 



Session 1: Considerations for experimental design.



(Laura Villacorta – Genecore EMBL)



10:45 – 11:30



 



Session 2: Sample isolation and preparation. Applications. (Laura Villacorta – Genecore EMBL)



 



11:30 – 12:00



Coffee break (on site)



12:00 – 12:45



Session 4: Short-read sequencing.



(Laura Villacorta – Genecore EMBL)



12:45 – 13:30



Session 5: Long-read sequencing.



(Laura Villacorta – Genecore EMBL)



13:30 – 14:30



Lunch break (free time)



14:30 – 15:15



Session 3: Making of Platynereis into a Model Organism.



(Leslie Pan, Arendt’s lab, EMBL)



 



The Arendt group is interested in the evolution of central nervous system in bilateral animals. With sequencing technologies becoming more accessible, we have built extensive genomics resources that has allowed us to dive deeper into cell type evolution. Leslie will introduce different published and unpublished works from the group, and how we leveraged the different sequencing technologies.



1. Assembling the genome of a highly heterozygous worm



2. Single cell transcriptomes for cross species comparison



3. In field genotyping/sequencing for species identification



15:15 – 16:15



Session 6: Wet lab consultations.



(Laura Villacorta, Leslie Pan, Jonathan Landry)




 



 



 



May 7th 2024 Tuesday



 



Dry lab lectures



















10:00 – 11:30



 



 



Session 7: Sequencing data formats and data QC.



(Jonathan Landry – Genecore EMBL)



11:30 – 12:00



Coffee break (on site)



12:00 – 13:00 



 



Session 8: Dry lab consultations



(Jonathan Landry - Genecore EMBL)



 




 


Sala de Seminarios, IMEDEA
Add event to google
Show in Google map
Dl 6th maig
2:00 pm
4:00 pm
Curso Base Programacion
Sala reuniones 3
Add event to google
Show in Google map
Dt 7th maig
12:00 pm
1:00 pm
SEMINARIO JB Raina (UT Sydney) - Uncovering complex chemically mediated microbial behaviours

Abstract



The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While natural chemical hotspots produce gradients comprised of hundreds to thousands of different chemical compounds, we do not know how this chemical diversity affects the chemotactic responses of bacteria. I will present results from two studies that reveal some unexpected responses when bacteria are exposed to complex chemical mixtures. Using in situ and laboratory-based assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharide laminarin, but chemotaxis towards this large molecule is enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. Using a novel chemotaxis choice assay, we then directly expose a model marine bacterium to four potent chemoattractants simultaneously (i.e., one monosaccharide and three amino acids). Although the bacterium is strongly chemotactic to each of these molecules in isolation, when these four molecules are provided simultaneously, the cells exhibit a striking response by swimming towards only one of them. These results start shedding light on the synergistic effects (e.g., laminarin and DMSP) and sharp chemical preferences modulating the behaviours of bacteria.


Sala de Reuniones, 2ª planta, IMEDEA
Add event to google
Show in Google map