Internal Cycle of Seminars at IMEDEA (CISI) consist on a cycle of seminar presentations given mainly by doctoral students, masters and junior postdocs, although it is not closed to other staff, such as visitors and staff, that take place every Friday from 4:00 p.m. to 4:30 p.m in the seminar room os IMEDEA.

This represents a great opportunity to learn more about the research carried out at the Institute and to bring those with less experience , the chance of increasing their presentation and public speaking skills. Afterwards, there will be soft drinks and beers for all attendees 😉 We strongly encourage you to participate. Join us!

Do you want to participate with a presentation? Please contact the organising team:

Next Seminars

Featured Seminars
05/07/2024
Internal Cycle of Seminars IMEDEA - Francisco Criado- «Mid-Term Beach Monitoring and Shoreline Change Detection: A Case Study of Son Bou Beach, Menorca»
Asbtract Beaches play a crucial role in protecting coastlines from wave energy, acting as the final barrier against coastal erosion. Sandy beaches are particularly susceptible to climate change effects, such as sea level rise and storminess. Understanding the dynamics of these environments amid ongoing changes is essential for designing effective adaptation measures and management strategies. However, the various factors influencing beach morphodynamics, coupled with their dynamic nature, render the integrated monitoring of these areas both resource-intensive and challenging in terms of time, human involvement, and economic resources. Therefore, long-term and high-frequency data-sets, including morphological and wave data, remain scarce in the literature. In this talk, I will present the preliminary results of the analysis of the Son Bou Beach (Menorca, Spain) data-set, with over 13 years (2011-2023) measurements, generated by the Modular Beach Integral Monitoring Systems (MOBIMS) from the Balearic Islands Coastal Observing and Forecasting System (SOCIB). The analysis focuses on characterizing the mid and short-term response of Son Bou beach by means of the shoreline position-change detection. A negative trend in beach width was observed, as well as different responses along the beach. The presence of a coastal lagoon and its opening periods have a significant impact on the beach behavior.

Previous Seminars

Internal Cycle of Seminars IMEDEA - Ana Laura Delgado - «Patterns and Trends in Chlorophyll-a Concentration and Phytoplankton Phenology in the Biogeographical Regions of Southwestern Atlantic.»

06/06/2024

Abstract

The Southwestern Atlantic Ocean (SWA), is considered one of the most productive areas of the world, with a high abundance of ecologically and economically important fish species. Yet, the biological responses of this complex region to climate variability are still uncertain. Using 24 years of satellite-derived Chl-a data, the SWA was classified into 9 spatially coherent regions based on the temporal variability of Chl-a concentration, as revealed by SOM (Self-Organizing Maps) analysis. These biogeographical regions were the basis of a regional trend analysis in phytoplankton biomass, phenological indices, and environmental forcing variations. A general positive trend in phytoplankton concentration was observed, especially in the highly productive areas of the northern shelf-break, where phytoplankton biomass has increased at a rate of up to 0.42 ± 0.04 mg m −3 per decade. Significant positive trends in sea surface temperature were observed in 4 of the 9 regions (0.08–0.26 °C decade −1) and shoaling of the mixing layer depth in 5 of the 9 regions (−1.50 to −3.36 m decade −1). In addition to the generally positive trend in Chl-a, the most conspicuous change in the phytoplankton temporal patterns in the SWA is a delay in the autumn bloom (between 15 ± 3 and 24 ± 6 days decade −1, depending on the region). The observed variations in phytoplankton phenology could be attributed to climate-induced ocean warming and extended stratification period. The provided results further evidence of the impact of climate change on these highly productive waters.